IT News
IT News
- Новости науки
- Новости игр
- Новости IT
- Другие новости
- Физика
- Погода и климат
- Человеческое тело
- Подводный мир
- Все о транспорте
Last update Вс, 29 Янв 2017 11pm
Как работает реактивный двигатель?
- » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
Дата Категория: Транспорт
Вращающийся воздушный винт тянет самолет вперед. Но реактивный двигатель с большой скоростью выбрасывает горячие отработавшие газы назад и тем самым создает реактивную силу тяги, направленную вперед.
Типы реактивных двигателей
Существует четыре типа реактивных, или газотурбинных двигателей:
Турбореактивные;
Турбовентиляторные — такие, как используемые на пассажирских лайнерах Боинг-747;
Турбовинтовые, где используют воздушные винты, приводимые в действие турбинами;
и Турбовальные, которые ставят на вертолеты.
Турбовентиляторный двигатель состоит из трех основных частей: компрессора, камеры сгорания и турбины, дающей энергию. Сначала воздух поступает в двигатель и сжимается при помощи вентилятора. Затем, в камере сгорания, сжатый воздух смешивается с горючим и сгорает, образуя газ при высокой температуре и высоком давлении. Этот газ проходит через турбину, заставляя ее вращаться с огромной скоростью, и выбрасывается назад, создавая таким образом реактивную силу тяги, направленную вперед.
Устройство турбовентиляторного двигателя
Попав в турбинный двигатель, воздух проходит несколько ступеней сжатия. Особенно сильно вырастают давление и объем газа после прохождения камеры сгорания. Сила тяги, создаваемая выхлопными газами, позволяет реактивным самолетам двигаться на высотах и скоростях, намного превосходящих те, что доступны винтокрылым машинам с поршневыми двигателями.
Попав в турбинный двигатель, воздух проходит несколько ступеней сжатия. Особенно сильно вырастают давление и объем газа после прохождения камеры сгорания. Сила тяги, создаваемая выхлопными газами, позволяет реактивным самолетам двигаться на высотах и скоростях, намного превосходящих те, что доступны винтокрылым машинам с поршневыми двигателями.
Турбореактивный двигатель
В турбореактивном двигателе воздух забирается спереди, сжимается и сгорает вместе с топливом. Образующиеся в результате сгорания выхлопные газы создают реактивную силу тяги.
Турбовинтовой двигатель
Турбовинтовые двигатели соединяют реактивную тягу выхлопных газов с передней тягой, создаваемой при вращении воздушного винта.
Электрический реактивный двигатель (ЭРД)
В прошлой публикации – об урановых снарядах — мы вели речь о способности к ударному взрыву многих металлов.
Продолжая начатый разговор, мы узнаем, что такое электрический реактивный двигатель, каковы принципы его работы и сфера применения, и даже получим ответ на вопрос, возможен ли полет на Марс в ближайшее время…
Для начала вернемся к ударным взрывам металлов. Важнейшим условием этого физического процесса является скорость металла.
Если для урана критическая скорость 1 500 м/с, для железа она превышает 4 000 м/с.
Поэтому от некоторых метеоритов, падающих на землю с такой или даже большей скоростью, не остается и следа. Они превращаются в тончайшую пыль.
На такую особенность обратил внимание еще в 1929 году знаменитый создатель наших ракетных двигателей и ракет Валентин Петрович Глушко.
Фото 1. Академик Валентин Петрович Глушко
Он написал статью под весьма интригующим заголовком «Металл как взрывчатое вещество».
В первых же ее строках автор сказал, что речь пойдет не об использовании металла в качестве взрывчатки, а о том, что при пропускании достаточно сильного импульса электрического тока через металлическую проволоку может произойти взрыв.
Температура при этом повышается до 300 000 градусов. Энергия такого взрыва превышает во много раз энергию взрыва самого мощного взрывчатого вещества, взятого в количестве, равном массе проволоки.
При этом сама энергия превышает энергию вызвавшего его импульса тока.
Электрический реактивный двигатель
Энергия такого взрыва была использована В.П. Глушко в миниатюрном электрическом реактивном двигателе (ЭРД), разработанным в начале 1930-х годов.
Двигатель легко умещался на ладони.
В него поступала металлическая проволока и подавались электрические импульсы, превращающие ее в пар.
Фото 2. Электрический реактивный двигатель (ЭРД), созданный В.П. Глушко в 1929-1933 гг.
Этот пар выходил через специальное сопло со скоростью в несколько десятков тысяч метров в секунду.
Для космонавтики это значит очень многое.
Чтобы достичь второй космической скорости (11 км/с), вес топлива, баков и корпуса ракеты на керосине и жидком кислороде должен составлять более 99 % ее стартового веса.
Таким образом, на долю полезного груза приходится лишь сотая часть.
Это связано с недостаточно большой скоростью истечения продуктов сгорания, около 3 400 м/с.
Если же взять ЭРД со скоростью истечения 25 — 30 км/с, то вес полезной нагрузки может увеличиться в 20 раз!
ЭРД: полет на Марс возможен!
Для полета на Марс требуется скорость 30 км/с. И здесь без ЭРД не обойтись.
Тогда вопрос: почему же мы сегодня не гуляем по Марсу, коль необходимый для этого двигатель существовал еще в 1932 году? Причин много. Вот хотя бы некоторые.
ЭРД способен работать только в пустоте космического пространства.
В обычной лаборатории вытекающая из него струя испарившегося металла смешивалась с воздухом и теряла скорость. Так, что даже тягу двигателя нельзя было достоверно измерить.
Лет через 20 подобные двигатели стали испытывать в специальных, очень дорогих вакуумных камерах.
Фото 3. Использования ЭРД делает возможным полет на Марс
Оказалось, что тяга подобных двигателей очень мала. Ее недостаточно даже для отрыва (только лишь двигателя!) от земли.
Тогда зачем же они нужны?
Они нужны для «неторопливого», длительного разгона в невесомости.
Смотрите. Если на тело массой 1 кг длительно действует сила 0,01 н (1 г), то через 28 часов оно приобретет скорость артиллерийского снаряда — 1 км/с, через 32 дня — 8 км/с (это первая космическая скорость), через 4 месяца — 30 км/с (третья космическая скорость), позволяющую лететь на Марс или вообще покинуть Солнечную систему.
Чтобы за 4 месяца набрать скорость 30 км/с, двигатель должен потреблять мощность. 300 Вт.
Не так много, в 3 раза меньше мощности утюга! Но у утюга есть розетка, а где взять розетку в космосе?
В качестве источника энергии для ракеты, оснащенной ЭРД, В.П. Глушко предложил использовать фотоэлементы.
Ракета, оснащенная такими двигателями, самостоятельно выйти в космос не может. Для старта должен применяться другой двигатель.
Но после выхода в космическое пространство «солнечная» ракета, оснащенная ЭРД, могла бы за несколько суток набрать такую скорость, которая недоступна для ракет любых других типов.
Подобная схема полета на Марс ныне рассматривается в российском проекте высадки космонавтов на Красную планету.
Что такое НЛО?
Жизненный цикл земноводных
Как венерина мухоловка ловит мух?
Почему человеческий организм — это живая машина?
Как называются звездные картины?
§ 5.5. РЕАКТИВНЫЕ ДВИГАТЕЛИ
Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Применяются они также для метеорологических и военных ракет различного радиуса действия.
Аппаратура Топливные Камера
элементы сгорания Сопло
В космическом пространстве использовать какие-либо другие двигатели, кроме реактивных, невозможно: нет опоры (твердой, жидкой или газообразной), отталкиваясь от которой космический корабль мог бы получить ускорение. Применение же реактивных двигателей для самолетов и ракет, не выходящих за пределы атмосферы, связано с тем, что именно реактивные двигатели способны обеспечить максимальную скорость полета.
Реактивные двигатели делятся на два класса: ракетные и воздушн о-р еактивные.
В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.
На рисунке 5.7 показана схема ракетного двигателя на твердом топливе. Порох или какое-либо другое твердое топливо, способное к горению в отсутствие воздуха, помещают внутрь камеры сгорания двигателя.
При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где расположено сопло. Вытекающие через сопло газы не встречают на своем пути стенку, на которую могли бы оказывать давление. В результате появляется сила, толкающая ракету вперед.
Суженная часть камеры — сопло служит для увеличения скорости истечения продуктов сгорания, что в свою очередь повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.
Применяются также ракетные двигатели, работающие на жидком топливе.
В жидкостно-реактивных двигателях (ЖРД) в качестве горючего можно использовать керосин, бензин, спирт, анилин, жидкий водород и др., а в качестве окислителя, необходимого для горения, — жидкий кислород, азотную кислоту, жидкий фтор, пероксид водорода и др. Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру, где при сгорании топлива развивается температура до 3000 °С и давление до 50 атм (рис. 5.8). В остальном двигатель работает так же, как и двигатель на твердом топливе.
Жидкостно-реактивные двигатели используются для запуска космических кораблей (рис. 5.9).
Воздушно-реактивные двигатели в настоящее время применяют главным образом на самолетах (рис. 5.10). Основное их отличие от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.
Камера л ос сгорания I
На рисунке 5.11 изображена схема воздушно-реактивного двигателя турбокомпрессорного типа. В носовой части расположен компрессор, засасывающий и сжимающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (обычно используется керосин) подается в камеру сгорания с помощью специальных форсунок.
Раскаленные газы (продукты сгорания), выходя через сопло, вращают газовую турбину, приводящую в движение компрессор. Турбокомпрессорные двигатели установлены в наших лайнерах Ту-134, Ил-62, Ил-86 и др.
Реактивными двигателями оснащены не только ракеты, но и большая часть современных самолетов.
Что такое реакивный двигатель
Ракетные двигатели по своей конструкции очень просты. На рис. 4.23 приведены принципиальная схема (а) и общий вид (б) одного из таких двигателей. Здесь: 1 и 2 — баки с горючим и окислителем; 3 — камера сгорания, в которой производится сжигание топлива; 4 — форсунки для подачи смеси горючего с окислителем; 5 — выходная дюза для выброса продуктов сгорания наружу. С помощью такого двигателя при выбросе продуктов сгорания и образуется реактивная сила тяги, приводящая в движение ракету. Найденная нами формула для реактивной силы позволяет полностью определить все требования, которым должно удовлетворять топливо и конструкция двигателя для получения наибольшей силя тяги, и найти все особые качества таких двигателей.
Рассмотрим сначала требования к топливу. Формула говорит, что для достижения наибольшей силы тяги нужно обеспечить выброс больших масс газов за одну секунду.
Значит, вещество топлива должно быть достаточно тяжелым, т. е. иметь достаточно большую плотность. Поэтому, например, керосин оказывается более пригодным топливом для таких двигателей, чем бензин.
Кроме того, топливо с выбранным окислителем должно обладать способностью быстро сгорать, или, как говорят физики, должно обладать большой скоростью горения. Поэтому, например, керосин с жидким кислородом оказывается намного выгоднее, чем соляровое масло. Скорость горения масла мала. Несмотря на большую плотность масла, малая скорость горения не позволяет получить большую массу выбрасываемых за секунду газов.
Формула далее говорит, что для получения большой силы тяги необходимо обеспечить большую скорость выброса газов относительно ракеты. Для этого нужно, чтобы на них действовали в момент выброса достаточно большие силы. Большие силы возникают только тогда, когда в камере сгорания создаются высокие давления. Но при определенной массе сгоревшего топлива давление становится большим только при очень высоких температурах газа в камере. Следовательно, условие получения больших скоростей выброса газов предъявляет новые требования к качествам топлива и окислителя: горючее должно обладать высокой температурой горения и выделять во время горения большое количество тепла.
Всем этим требованиям и стараются удовлетворить создатели двигателей при выборе топлива. Отыскание топлива с такими качествами было одной из труднейших задач, которую первыми решили советские ученые.
Требования к конструкции двигателя также ясно видны из формулы реактивной силы и из найденных нами требований к качеству топлива. Механизмы подачи топлива и окислителя должны подавать в камеру сгорания большие количества горючего каждую секунду. Материал стенок камеры сгорания и выходных дюз должен длительное время выдерживать действие больших сил при температурах много более 1000°С, т. е. необходимо, чтобы он обладал большой жаростойкостью и большой прочностью при высоких температурах.
Создание таких новых материалов также было одной из труднейших задач, которую успешно решили ученые, занимающиеся физикой твердого тела.
Наконец, формы камеры сгорания и дюз должны быть такими, чтобы возникающая реактивная сила была направлена в нужную сторону. Необходимо, чтобы дюзы свободно пропускали большие массы газа так, чтобы внутри струи не возникало ненужных движений.
Однако самое замечательное следствие из формулы реактивной силы — это определение особых качеств ракетных двигателей, отличающих их от всех других двигателей.
Сила тяги обычных двигателей уменьшается обратно пропорционально скорости того корабля, на котором они установлены. При некоторой скорости эта сила становится равной тормозящим силам, действующим со стороны других тел. После этого корабль перестает
разгоняться и начинает двигаться равномерно. Для каждого тела, приводимого в движение обычным двигателем, существует предельная скорость, которую превысить невозможно.
В том, что такая зависимость силы тяги от скорости есть, вы легко можете убедиться сами. Мышцы вашего тела являются своеобразными двигателями обычного типа. Вы начинаете бег. На старте напрягаете полностью мышцы и можете развить очень большую силу начального толчка. Но во время бега при большой скорости при самом большом напряжении мышц вы никогда не сможете развить такой силы толчка. Поэтому для каждого бегуна есть своя предельная скорость.
Как видно из формулы реактивная сила совершенно не зависит от скорости корабля, на котором установлен ракетный двигатель. В этом и состоит важнейшее отличие ракетных двигателей от обычных.
На это свойство ракетных двигателей впервые обратил внимание выдающийся русский ученый К. Э. Циолковский. Он первый указал на то, что возможность сообщать ракете ускорения с помощью только реактивных сил без участия других тел и независимость этих сил от скорости корабля открывают для человека единственную возможность выйти в космическое пространство. К. Э. Циолковский по праву стал родоначальником всей современной космонавтики.
Мы рассмотрели особенности ракетного двигателя. Реактивные двигатели, установленные на самолетах, устроены и работают так же и отличаются от ракетных только тем, что для сжигания топлива они используют атмосферный воздух. Поэтому такие двигатели снабжаются дополнительными устройствами для подачи воздуха в камеру сгорания.
На рис. 4.24 приведена схема самолетного турбореактивного двигателя. Здесь: 1 — выходная дюза для выброса продуктов сгорания топлива и воздуха; 2 — газовая турбина, приводящая в движение компрессор; 3 — камера сгорания; 4 — форсунка; 5 — компрессор; 6 — стартер.
Такой реактивный двигатель обладает всеми главными достоинствами ракетных двигателей. Возможность получать большие силы тяги и независимость этих сил от скорости самолета позволили достичь сверхзвуковых скоростей, измеряемых тысячами километров в час. Таким образом, простое уравнение реактивной силы, с которым мы познакомились, послужило отправной точкой для освоения космоса и для технической революции в авиации.
Открытие Мещерского, прозорливость К. Э. Циолковского, инженерный и организаторский талант академика Королева, мастерство и мужество Юрия Гагарина, умелые руки советских рабочих и техников открыли человечеству дорогу к другим планетам, новую эпоху в освоении воздушного пространства.