Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое разнос двигателя тепловоза

тепловоз

Тепловоз — автономный локомотив, первичным двигателем которого является двигатель внутреннего сгорания, обычно дизель. Название дизель-электровоз иногда применяется для тепловозов с электрической трансмиссией.

Общая характеристика

Дизельный двигатель тепловоза преобразует энергию сгорания жидкого топлива в механическую работу вращения коленчатого вала, от которого вращение через тяговую передачу получают движущие колёса. К основным узлам тепловоза относится: экипажная часть, кузов тепловоза. К вспомогательным узлам — система охлаждения, система воздухоснабжения, воздушная (тормозная) система, песочная система, система пожаротушения и т. д.

Общий принцип работы и конструкция

Схема компоновки советского экспортного тепловоза ТЭ109 с электрической передачей переменно-постоянного тока

на схеме помечены:

Зависимость силы тяги от скорости движения является основной характеристикой тепловоза и называется тяговой характеристикой. Для случая максимального использования мощности локомотива график такой характеристики представляет собой гиперболу, в каждой точке которой произведение силы тяги на скорость локомотива равно его максимальной мощности.
При движении механическая энергия на валу дизеля, как правило, сначала преобразуется в электрическую (тепловоз с электропередачей) или энергию другого вида, а затем уже в механическую, которая и вращает колёса. Цель такой передачи — обеспечить близкий к оптимальному режим работы дизеля в разных точках графика тяговой характеристики локомотива.

Виды передач

Основной трудностью при попытках соединить вал дизеля напрямую с колёсными парами является разгон тепловоза и запуск дизеля. Делались попытки применить для этого сжатый воздух (то есть дизель при трогании с места работал как пневматический двигатель), однако запасов сжатого воздуха в баллонах не хватало для нормального разгона локомотива.

Механическая передача

Механическая передача включает фрикционную муфту и коробку передач с реверс-редуктором; она обладает малым весом и высоким КПД, однако при переключении передач неизбежно возникают рывки. На практике её используют на локомотивах малой мощности (мотовозах), дизель-поездах, дрезинах и автомотрисах.

Электрическая передача

Более эффективной передачей стала электрическая, при которой вал дизеля вращает якорь тягового генератора, питающего тяговые электродвигатели (ТЭД). В свою очередь вращательное движения якоря ТЭД передаётся колёсной паре с помощью осевого редуктора. Редуктор представляет собой соединённые зубчатые колёса, располагающиеся на якоре ТЭД и оси колёсной пары. В случае электропередачи поддерживается гиперболическая тяговая характеристика, когда увеличение сопротивления движения вызывает увеличение силы тяги, а уменьшение — ускорение локомотива. Электропередача позволяет соединять несколько секций тепловоза и управлять ими по системе многих единиц из одной кабины. Минусом её является большая масса и относительная дороговизна необходимого оборудования. В случае электропередачи возможно использование электродинамического торможения, суть которого заключается в использовании ТЭД в качестве генераторов, за счёт сопротивления вращению вала якоря которых осуществляющих торможение тепловоза (вырабатываемая электроэнергия гасится в тормозных резисторах). По сравнению с пневматическими тормозами электродинамическое торможение более эффективно, меньше износ тормозных колодок, снижается опасность юза колёсных пар.

Первоначально в тепловозах использовалась передача постоянного тока, однако в дальнейшем (в СССР это был конец 1960-х годов) передачу стали постепенно переводить на переменный ток. Первоначально на переменном токе стал работать генератор, после которого ток всё же выпрямлялся с помощью выпрямительной установки, далее поступая на ТЭД постоянного тока. В СССР первыми серийными тепловозами с передачей переменно-постоянного тока стали грузопассажирский экспортный ТЭ109, пассажирский ТЭП70 и грузовой 2ТЭ116.

Первый в мире тепловоз с асинхронными ТЭД переменного тока был построен компанией Brush Traction, а первым отечественным опытом использования асинхронных ТЭД стал опытный тепловоз ВМЭ1А. Особенностью использования асинхронных ТЭД является необходимость управления частотой их вращения для получения необходимой характеристики. В 1975 году в СССР на базе тепловоза ТЭ109 был построен опытный тепловоз ТЭ120 с электрической передачей переменного тока, где и генератор, и ТЭД использовали переменный ток. Электрической передачей переменного тока оснащён современный отечественный маневровый тепловоз ТЭМ21.

Использование генераторов и ТЭД переменного тока позволяет увеличить их мощность, а также снизить массу, повысить надёжность эксплуатации и упростить их обслуживание. Использование асинхронных тяговых двигателей, ставшее возможным после появления полупроводниковых тиристоров, значительно снижает возможность боксования тепловоза, что позволяет уменьшить массу локомотива, сохраняя его тяговые свойства. Даже в случае использования промежуточного выпрямительного блока применение генератора переменного тока и асинхронных ТЭД оказывается экономически оправданным. Передачи постоянного тока отличаются сравнительной простотой конструкции и продолжают использоваться на тепловозах мощностью до 2000 л. с.

Гидравлическая передача

В гидравлической передаче механическая энергия вала дизеля передаётся колёсной паре с помощью гидравлического оборудования (гидромуфт и гидротрансформаторов). В общем виде гидравлическое оборудование представляет собой комбинацию насосного колеса, связанного с валом двигателя, и турбинного колеса, соединённого с осью колёсной пары. Насосное и турбинное колесо находятся на небольшом расстоянии друг от друга, а промежуток между ними заполнен жидкостью (маслом), передающей энергию вращения насосного колеса турбинному. Регулировка передаваемого крутящего момента осуществляется изменением количества рабочей жидкости (масла) на лопатках насосного и турбинного колеса. Гидравлическая передача легче, чем электрическая, не требует расхода цветных металлов, но обладает меньшим КПД. В СССР применялась главным образом на маневровых тепловозах, а также на магистральных тепловозах малой мощности (ТГ102, ТГ16, ТГ22).

Делались также попытки создания тепловоза с воздушной и газовой передачей, однако они были признаны неуспешными.

Пульт машиниста маневрового тепловоза ЧМЭ3

Почему двигатель идет вразнос

Когда двигатель уходит в разнос?

В случае такой проблемы речь идет о непроизвольном увеличении оборотов, превышающем норму. При этом они не подвластны никакому контролю. Чаще всего, заметить данную неполадку можно во время запуска или же при сбросе нагрузки. В основном, происходит разнос дизельного двигателя, хотя иногда такое может произойти и с карбюраторным, бензиновым. Также к подобной поломке менее склонны и современные агрегаты, т.е. чем старше автомобиль, тем больше вероятность проблемы.

Обнаружить это довольно просто, обороты резко повышаются, из глушителя выкидывает масло, что сопровождается густым выделением дыма. Причиной данной поломки, скорей всего, служит неисправная топливная рейка ТНВД (насос высокого давления для топлива), вернее ее заклинивание, таким образом, топливо поступает в цилиндры в неограниченном количестве. При этом, чем больше обороты, тем больше солярки поступает в камеру сгорания. Происходит размыкание цепи обратной отрицательной связи, и в зависимости от положения регулятора движок либо глохнет, либо же уходит в разнос.

Второй причиной является захват масла. Если движок сильно изношен, то газы, прорываясь через стенку поршня в картер, подхватывают масляный туман и выносят его в коллектор. Учитывая тот факт, что масло содержит достаточно энергии, обороты двигателя начинают резко возрастать, а захват масла происходит более интенсивно. Есть и еще одна причина, почему двигатель идет в разнос – это неисправность турбины или прогар поршня. И если масло накопилось в интеркулере, то разнос может повториться.

Дизель пошел в разнос: причины неисправности

Ответить, почему дизельный двигатель идет вразнос, помогает изучение особенностей системы топливоподачи и воспламенения смеси в двигателях данного типа. Обороты бензинового мотора напрямую зависят от степени открытия дроссельной заслонки, через которую поступает необходимый для сгорания бензина воздух. Чем больше подается воздуха, тем больше сгорит топлива.

Что касается дизеля, то подача воздуха в таких моторах не ограничена, а управление частотой оборотов коленвала осуществляется посредством дозирования топлива, подаваемого в цилиндры. Более того, смесь топлива и воздуха воспламеняется в дизеле не от искры, а от сжатия и нагрева. Получается, дизель работает до того момента, пока в камере сгорания есть топливо.

Подача топлива и ТНВД

Вполне очевидно, что нарушения, связанные с работой систем подачи топлива, могут привести к разносу дизельного двигателя. В данном случае речь идет о ТНВД, который отвечает за точное дозирование топлива. Для того чтобы дизель поддерживал строго заданные обороты, в конструкции используется центробежный регулятор. Указанный регулятор ограничивает подачу солярки при увеличении частоты вращения коленвала.

Заклинивание топливной рейки в насосе высокого давления приводит к тому, что мотор глохнет или происходит неконтролируемая подача солярки. В случае активной топливоподачи обороты в результате впрыска большего количества топлива самопроизвольно и резко повышаются, двигатель раскручивается сильнее.

ТНВД имеет прямую взаимосвязь с коленчатым валом через редуктор. Рост оборотов коленвала заставляет насос подавать еще больше топлива, получается замкнутый круг. В результате такой зависимости ТНВД от оборотов двигателя насос попросту заливает цилиндры соляркой, дизель быстро выходит на максимум оборотов и далее идет в разнос.

Попадание моторного масла в камеру сгорания

Данная проблема встречается реже, чем разнос дизеля по причине неисправностей ТНВД, а также более свойственна дизельным двигателям с неисправным турбокомпрессором. Необходимость смазывать и охлаждать турбину заставляет конструкторов подавать в устройство моторное масло. Масло отличается горючестью при высоких температурах. Высокая степень сжатия в цилиндрах дизельного двигателя обеспечивает очень высокую температуру в момент окончания такта сжатия. При условии обильной течи масла в турбине и попадания его в цилиндры смазка закономерно начинает гореть.

Рекомендуем также прочитать статью об устройстве системы питания дизельного двигателя. Из этой статьи вы узнаете о конструктивных особенностях, принципах работы и составных элементах указанной системы.

Дополнительно масло может попадать в цилиндры через систему вентиляции картера, так как картер двигателя соединяется с впускным коллектором для того, чтобы вентилировать масляные пары в процессе работы ДВС. Износ поршневых колец позволяет газам активно прорываться в картер, давление картерных газов растет (дизель сапунит), количество паров масла во впуске увеличивается.

Сгорание масла в рабочей камере заставляет дизель набирать обороты. Рост оборотов повышает давление масла в системе смазки двигателя. Снова получается замкнутый круг, в результате чего масло под давлением все более интенсивно проникает в цилиндры через турбину и воздушный фильтр. Дизель в этом случае также идет в разнос.

Читать еще:  Двигатель g4gc технические характеристики

Почему двигатель идет в разнос – определяем причину

Последняя поломка является весьма опасной, так как она может привести к следующим последствиям:

  • возгорание, возникшее в выпускном коллекторе;
  • заклинивание движка, вследствие его перегрева;
  • и даже его разрушение из-за повышенных механических нагрузок.

Итак, двигатель пошел в разнос, и причины могут быть разные, значит, для устранения возникшей проблемы крайне важно выявить, что именно поспособствовало возникновению разноса. Если вы видите, что из глушителя валит густой дым, при этом обороты резко возрастают, то, скорей всего, неисправна турбина. А одной из причин неисправности турбонаддува, в свою очередь, является возникшая течь масла. В этом случае даже при отключении подачи топлива вполне возможна дальнейшая работа движка, просто на масле.

Если же причиной послужила неисправная топливная рейка ТНВД, то это приводит к перегреву движка со всеми вытекающими из этого последствиями. Также это можно определить по черной солярке, имеющей пузыри воздуха в «обратке».

Почему дизель идет в разнос, и как остановить процесс?

На самом деле причин разноса двигателя не много. Чаще всего это может произойти по двум причинам:

  1. Неисправность топливного насоса.
  2. Попадание масла в цилиндры внутреннего сгорания.

В первом случае сбой может наступить из-за поломки топливной рейки в ТНВД. В таком случае развитие событий будет происходить по одному из сценариев:

  • Солярка полностью перестает поступать в двигатель, и он попросту глохнет.
  • Количество поступающего в двигатель топлива многократно увеличится, из-за чего вал начнет оборачиваться все быстрее (работа дизельных двигателей контролируется поступающим в камеры сгорания топливом). А так как скорость подачи солярки напрямую зависит от числа оборотов коленчатого вала, то чем быстрее будет работать двигатель, тем больше топлива будет вбрасывать в него насос. Круг замкнулся!

Также встречаются случаи разноса дизеля по причине проникновения масла в камеру сгорания. Если двигатель турбированный, то вполне вероятно, что проблема вызвана именно неисправностью турбины. Дело в том, что турбина в связи с большими нагрузками сильно нагревается, поэтому нуждается в постоянном охлаждении и смазке. Таким образом, конструкторами было обеспечено бесперебойное поступление масла к этому механизму. Если в системе возникают утечки, то масло вместе с воздухом начинает попадать в цилиндры внутреннего сгорания, где под воздействием сильного давления станет выполнять функцию топлива и разгонять дизельный двигатель.

Попасть масло в камеры сгорания может и через вентиляцию картера. Так как система вентиляции соединяется с впускным коллектором. Если поршневые кольца изношены, то давление с камеры сгорания проникает в картер, а масляные пары при этом с большой вероятностью начнут попадать в цилиндры двигателя, провоцируя рост оборотов. В свою очередь, увеличение числа оборотов приводит к повышению давления масла, замкнутый круг. Именно поэтому остановить разнос дизельного двигателя очень непросто.

Гораздо реже причина может скрываться в некорректной работе акселератора. Но заметить и исправить такую поломку вовремя гораздо легче. В любом случае надрывная работа двигателя может привести к закипанию, заклиниванию, перегоранию поршней, деформации клапанов или поломке самого коленчатого вала. Кроме того, может произойти возгорание в выпускном коллекторе.

Что такое разнос двигателя?

Количество дизельного транспорта с каждым днем все увеличивается. Поэтому достаточно часто можно наблюдать картину идущий автомобиль в клубах черного дыма. Или из выхлопной трубы легкового автомобиля вылетает едкий дым с достаточно громкими хлопками. В отдельных случаях наблюдаются вспышки пламени. Это является первым признаком проблемы, которую называют, разнос дизельного двигателя.

Разнос двигателя — это повышение оборотов двигателя до критических значений. Данное событие для водителя неподконтрольно. Опасность проявляется во время движения, так как разгон или торможение может спровоцировать аварию.

Даже если эксплуатировать машину в спокойном режиме, повышенные обороты способны полностью вывести из строя мотор. На панели приборов стрелка тахометра будет располагаться в зоне, отмеченной красным.

К последствиям разноса двигателя можно отнести следующие проблемы:

  • Поломка коленчатого вала;
  • Начинается процесс плавления клапанов и поршней;
  • Возможен взрыв двигателя, при котором осколки разлетятся по всем системам автомобиля, расположенным под капотом.

Опасность разноса [ править | править код ]

Если не предпринимать каких-либо действий по выводу из разноса, двигатель приходит в негодность по одной из перечисленных причин:

  • разрушение двигателя в результате повышенной механической нагрузки (центробежных сил);
  • у дизеля — возгорание в выпускном коллекторе, перегрев и заклинивание двигателя;
  • у электродвигателя — возникновение «кругового огня» вокруг коллектора.

Выведенный из разноса двигатель нуждается в капитальном ремонте, а иногда и вовсе не подлежит восстановлению. На летательном аппарате разрушение турбины может вызвать повреждение конструкции и аварию.

Принцип действия и устройство тепловоза

Принцип действия и основные узлы тепловоза. Важнейшей частью любого тепловоза является его первичный двигатель — дизель. Дизель преобразует внутреннюю химическую энергию топлива в механическую энергию вращения коленчатого вала. Свойства дизеля как двигателя не в полной мере соответствуют требованиям поездной работы локомотива, его переменным режимам работы. Мощность дизельного двигателя прямо пропорциональна частоте вращения его коленчатого вала (при неизменной подаче топлива). Для локомотива более полезной является работа двигателя на постоянном режиме — обычно при максимальной (номинальной) частоте вращения коленчатого вала, когда дизель развивает наибольшую мощность. Чтобы обеспечить возможность работы дизеля с постоянной частотой вращения вала при любых режимах движения поезда, энергия от вала двигателя передается колесным парам, скорость вращения которых при движении должна меняться не непосредственно, а через специальные промежуточные устройства, называемые передачей. Передача приспосабливает дизель к условиям работы на локомотиве. На тепловозах применяются главным образом электрические или гидравлические передачи.

При электрической передаче (рис. 1.1, а) механическая энергия вращения коленчатого вала дизеля 1 сообщается электрическому тяговому генератору 2, который преобразует ее в электрическую. Электрическая энергия от генератора поступает в тяговые электрические двигатели 3, которые кинематически связаны с движущими колесными парами 4 и приводят их во вращение.

На тепловозах с гидравлической передачей (рис. 1.1, б) энергия дизеля 1 затрачивается на привод гидравлического насоса 2, сообщающего энергию жидкости, которая циркулирует в замкнутом контуре. Поступая в гидравлическую турбину 5, поток жидкости передает на ее лопатки свою кинетическую энергию и вращает вал ротора турбины, а вместе с ним и колесные пары 4 тепловоза.

К основным частям тепловоза, помимо дизеля и передачи, можно отнести вспомогательное оборудование и экипажную часть.

Экипажная часть тепловоза состоит из кузова, главной рамы с ударно-сцепными устройствами (автосцепками) и тележек с колесными парами и упругим рессорным подвешиванием.

Рис. 1.1. Схемы размещения основного оборудования и преобразования энергии на тепловозах: а — с электрической передачей; б — с гидравлической передачей Главная рама тепловоза служит основанием для размещения силовой установки и вспомогательного оборудования. Она передает их вес через колеса на рельсы. Кроме того, рама передает продольные тяговые усилия от ведущих осей к составу. Кузов размещается также на раме и защищает оборудование тепловоза от внешних воздействий. Кузова тепловозов бывают двух типов (рис. 1.2): вагонного или закрытого (обычно у магистральных тепловозов) и капотного (у маневровых тепловозов). В первом случае кузов образует машинное помещение с внутренними проходами для обслуживания силовой установки; во втором — капот накрывает оборудование тепловоза, доступ к которому снаружи обеспечивается через боковые дверцы. Для возможности прохода обслуживающего персонала на тепловозе с капотным кузовом устраивают продольные (с обеих сторон) и поперечные (по концам рамы) площадки.

Колесные пары большинства современных тепловозов размещены в тележках, двух- или трехосных1, которые могут поворачиваться относительно опирающейся на них главной рамы. Такое устройство экипажной части облегчает прохождение тепловозом кривых участков пути. У некоторых промышленных тепловозов малой мощности движущие колесные пары соединяются непосредственно с главной рамой (экипаж в жесткой раме).

Термин «ось» в транспортной технике употребляется в двух значениях. Буквально «ось» — это одна из деталей колесной пары, объединяющая два колеса в одно целое и воспринимающая вес локомотива или вагона.

Однако часто это слово используется в более общем переносном смысле. Под «осью» подразумевается колесная пара, единичная точка опоры подвижного состава на рельсы. Именно в этом смысле говорят «шестиосный локомотив», «восьмиосный вагон», «трехосная тележка», «нагрузка на ось (или от оси иа рельсы)» и т. д.

Вспомогательное оборудование обеспечивает нормальную работу дизеля, передачи и экипажной части, а также тепловоза в целом. К нему относятся топливная, водяная и масляная системы дизеля, его устройства охлаждения и воздухо-снабжения, а также системы охлаждения и вспомогательные устройства передачи, песочная система экипажа, воздушная (тормозная) система тепловоза, система пожаротушения и т. п.

Топливная система обеспечивает питание дизеля жидким топливом. Она состоит из топливных баков, вспомогательных подкачивающих насосов, топливных фильтров, топ-ливоподогревателей, основных топливных насосов и форсунок, рас-пыливающих топливо в цилиндрах дизеля.

Система водяного охлаждения дизеля (водяная система) служит для отвода теплоты от его цилиндров и включает в себя циркуляционный водяной насос и радиаторы, в которых теплота от воды передается атмосферному воздуху. Для более интенсивного отвода теплоты от радиаторов воздух через них прогоняется принудительно — специальным вентилятором.

Масляная система дизеля, состоящая из насосов, фильтров для очистки масла и охлаждающих устройств (радиаторов или теплообменников), служит для подачи смазки масла к трущимся частям дизеля, а также частично и для отвода теплоты от них, а в некоторых случаях и от поршней дизеля.

Воздушная система тепловоза (тормозной компрессор, главные и запасные резервуары сжатого воздуха и др.) обеспечивает работу тормозных средств всего поезда, а также ряда вспомогательных устройств тепловозов.

Системы воздухоснабжения и воздушного охлаждения состоят из агрегатов, предназначенных для подачи воздуха (воздуходувки и нагнетатели — для дизеля, вентиляторы — для охлаждения электрических машин), воздухозаборных устройств (окна, жалюзийные решетки), воздухоочистителей и воздуховодов.

Читать еще:  601 двигатель дизель не заводится

Общее устройство современных тепловозов рассмотрим на примере магистральных тепловозов типа 2ТЭ10 (2ТЭ10Л, 2ТЭ10В, 2ТЭ10М), наиболее распространенных серийных грузовых тепловозов СССР в настоящее время. Тепловоз имеет электрическую передачу постоянного тока и состоит из двух одинаковых секций (рис. 1.3), соединенных между собой стандартной автосцепкой 21. Каждая секция с кузовом 12 вагонного типа имеет свою кабину машиниста 2 с пультом управления 1 и в случае необходимости может использоваться в качестве самостоятельного локомотива. При совместной работе обе секции управляются с поста управления головной секции.

Источником энергии на тепловозе служит двухтактный дизель типа 1 ОД 100 мощностью 2200 кВт. Основная часть энергии дизеля 13 передается тяговому генератору 9, вал якоря которого соединен при помощи Рис. 1.2. Тепловозы с различными типами кузова:

а-вагонного; б-капотного полужесткой пластинчатой муфты с коленчатым валом дизеля. Тяговый генератор преобразует механическую энергию вращения вала дизеля в электрическую. Дизель с генератором, установленные на общей под-дизельной раме 10, представляют собой единый силовой агрегат — дизель-генератор.

Дизель-генератор, являющийся наиболее тяжелой частью тепловоза, расположен на главной раме 26, в ее средней части. Это необходимо для равномерного распределения нагрузок на колесные пары 23, которые объединены в две одинаковые трехосные тележки 25.

Рис. 1.3. Схема размещения основных узлов на секции тепловоза 2ТЭ10

Рама 26 опирается на каждую тележку 25 в четырех точках (боковых опорах). Центральный шкворень, соединяющий раму с тележкой, является осью поворота тележки относительно рамы и передает только горизонтальные усилия.

Все оси тепловозов (см. сноску к с. 8) движущие. На оси каждой колесной пары 23 подвешен тяговый электродвигатель 22. Тяговые электродвигатели питаются током от тягового генератора 9. Они преобразуют электрическую энергию в механическую и через зубчатые передачи (редукторы) приводят во вращение колесные пары 23.

Для привода агрегатов вспомогательного оборудования мощность от вала дизеля отбирается через передний 6 и задний 15 редукторы. В частности, с передним редуктором 6 связаны тормозной компрессор 4 и двухмашинный агрегат 3, состоящий из возбудителя, питающего обмотку главных полюсов тягового генератора, и вспомогательного генератора, являющегося на тепловозе источником низкого (75 В) напряжения для цепей управления, освещения и т. п.

От заднего редуктора 15 через гидроредуктор 19 приводится вентилятор охлаждающего устройства 17. Последний просасывает воздух через радиаторы для охлаждения воды, состоящие из отдельных секций 18. Секции (различной величины) расположены в два яруса с обеих сторон шахты холодильника 20. Нагретый воздух вентилятор выбрасывает вверх через крышу тепловоза.

Между кабиной машиниста 2 и машинным помещением по обеим сторонам от центральной двери находятся высоковольтные камеры 7, в которых размещена большая часть электрических аппаратов.

По обеим сторонам дизеля под полом расположены элементы аккумуляторной батареи, которая используется для пуска дизеля. Роль пускового двигателя (стартера), раскручивающего вал дизеля, играет при этом тяговый генератор. На его полюсах размещена дополнительная пусковая обмотка, которая при пуске включается последовательно с обмоткой генератора на напряжение аккумуляторной батареи. Гене: ратор, таким образом, оказывается временно в режиме электродвигателя последовательного возбуждения. Когда вал дизеля достигнет необходимой частоты вращения и дизель начнет работать, пусковая цепь размыкается. После этого тяговый генератор, приводимый дизелем, может сам вырабатывать электрическую энергию. При работе дизеля аккумуляторная батарея заряжается от вспомогательного генератора.

Запас топлива хранится в баке 24, подвешенном к главной раме в средней ее части. Воздух для дизеля засасывается из атмосферы через воздухоочистители, расположенные в боковых стенках кузова с обеих сторон тепловоза, турбокомпрессорами 14 и центробежным нагнетателем 11, работающими последовательно, и через воздухоохладитель нагнетается в цилиндры дизеля. Продукты сгорания (газы) из цилиндра отводятся через турбины турбокомпрессоров 14, глушители, находящиеся на противоположном от генератора торце дизеля, и выхлопные патрубки на крыше кузова в атмосферу.

Тяговые электрические машины, в обмотках которых при работе выделяются большие количества теплоты, охлаждаются воздухом. Для охлаждения генератора служит специальный вентилятор 8, связанный с верхним валом дизеля. Охлаждение тяговых электродвигателей обеспечивается вентиляторами 5 и 16. Они приводятся во вращение от вала дизеля соответственно через передний 6 и задний 15 редукторы. Каждый вентилятор подает воздух в три двигателя одной тележки. Воздух подводится к двигателям по каналам в раме тепловоза и затем по гибким брезентовым рукавам.

На привод вспомогательных агрегатов тепловоза затрачивается значительная мощность — 160-230 кВт на секцию (вентиляторы охлаждения тяговых электродвигателей — по 15 кВт, вентилятор тягового генератора-18 кВт, вентилятор холодильника- 90-120 кВт, в зависимости от режима, тормозной компрессор — до 45-60 кВт).

С учетом потерь в передаче максимальная полезная (так называемая касательная) мощность тепловоза 2ТЭ10В, имеющего дизели общей мощностью 4400 кВт (6000 л. с), составляет примерно 3400 кВт. Наибольшая (конструкционная) скорость тепловоза 100 км/ч.

Магистральные грузовые тепловозы с электрической передачей (ТЭЗ, 2ТЭ116) имеют в основном такое же, как на тепловозе типа 2ТЭ10, расположение силового и вспомогательного оборудования, но имеют конструктивные отличия.

Маневровые локомотивы

Примеры неисправностей механического и электрического оборудования

Тепловозы ЧМЭЗ, ЧМЭЗТ и ЧМЭЗЭ достаточно надежны, однако и в их оборудовании возникают неисправности. Ниже приведены примеры таких неисправностей, а также способы их устранения.

Случай первый. При осмотре дизеля во время приемки тепловоза помощник обнаружил следы топлива на верхнем горизонтальном листе отсека распределительного вала, а также брызги топлива на внутренней стороне дверцы капота. После пуска дизеля машинист обнаружил пробой трубопровода высокого давления 13 (см. рис. 43) второго топливного насоса. После остановки дизеля бригада отключила насос, отсоединила трубопровод высокого давления, положила монету на торец нажимного штуцера //, после чего снова закрепила накидной гайкой 12 трубопровод 13.

Случай второй. После приемки тепловоза в депо машинист запустил дизель, который сразу же пошел «в разнос», в результате чего сработал предельный регулятор. При повторном пуске произошло то же самое. Бригада стала осматривать топливные насосы и обнаружила (с опозданием!), что рейка четвертого топливного насоса сильно заедает, находясь в положении максимальной подачи топлива. Так как тепловоз находился в депо, то слесаря заменили неисправный топливный насос.

Случай третий. При следовании с поездом машинист заметил, что с 5-й позиции контроллера не меняется частота вращения коленчатого вала дизеля. Посадив помощника за пульт управления, машинист открыл верхнюю дверь аппаратной камеры, нажал вручную на блокировку БК1 и сказал помощнику, чтобы тот производил набор позиций. Таким образом машинист визуально убедился в том, что на 5-й позиции выключается реле РУ5. Это могло быть только из-за размыкания цепи питания катушки реле контактами РДМ.

Так как при приемке тепловоза уровень масла в баке был немного выше нижней риски, машинист послал помощника осмотреть дизель. При обходе помощник заметил брызги масла в месте выхода коленчатого вала из рамы дизеля и блока цилиндров (как потом было установлено, произошла поломка лабиринтного кольца, что и привело к падению давления масла в системе).

Профиль пути не позволял вести поезд с пониженной мощностью дизеля. Поэтому машинист соединил перемычкой провода 246 и 252 на панели зажимов РШ4 (см. рис. 153), обойдя контакты РДМ. Одновременно он предупредил по радиосвязи дежурного по станции о неисправности локомотива. Поезд был принят на боковой путь. После отцепки от состава машинист снял временную перемычку и резервом доехал до депо (дизель работал на позициях не выше 4-й, так как минимально допустимое давление масла в системе сохранялось).

Случай четвертый. Во время работы дизеля загорелась сигнальная лампа ЛСД1 перегрева воды (масла). Одновременно сработал звуковой сигнал ЗС. Остановив дизель, бригада начала осмотр и обнаружила, что в расширительном баке резко уменьшилось количество воды (уровень воды по водомерному стеклу был меньше половины нормального). При дальнейшем осмотре водяной системы бригада обнаружила трещину в перепускном патрубке, по которому вода из напорного коллектора 46 (см. рис. 72) поступала в блок цилиндров. Для выхода из положения машинист с помощником разрезали старый тормозной рукав и с помощью стальной проволоки закрепили его на неисправном патрубке, закрыв трещину.

Случай пятый. При исправной работе термореле РТЖ2 и вентиля ВПЖ2 на тепловозе не включался главный вентилятор. Так как верхние жалюзи основного контура холодильника открывались и закрывались нормально, машинист предположил, что произошло заедание золотника гидромеханического редуктора.

Заглушив дизель, бригада отвернула четыре гайки и сняла крышку 5 (см. рис. 83) над правым золотником золотниковой коробки, затем вручную «расходила» золотник 8 и закрепила крышку 5. После пуска дизеля проверили включение главного вентилятора, нажав на якорь вентиля ВПЖ2. Вентилятор стал включаться нормально.

Случай шестой. При приемке тепловоза бригада обнаружила ослабление клиновых ремней привода двухмашинного агрегата. Отвернули нижнюю гайку на стяжном болте 10 (см. рис. 110) и стали заворачивать верхнюю гайку, увеличивая тем самым натяжение ремней. Отрегулировав натяжение, довернули нижнюю гайку до упора в накладку 9.

Случай седьмой. На тепловозе перестал работать компрессор. После принудительного включения вентиля ВПЖ2 машинист увидел, что главный вентилятор тоже не включается, т. е. масло к обеим гидромуфтам не поступает. Машинист с помощником отсоединили трубу подвода масла к гидромеханическому редуктору от вентиля 4 (см. рис. 62) и убедились, что масло через вентиль не проходит. При заглушённом дизеле разобрали вентиль и обнаружили в нем остатки паронито-вой прокладки. После очистки поставили вентиль на место. Компрессор и главный вентилятор стали работать нормально.

Случай восьмой. При включении кнопки «Пуск дизеля» систематически отключался автомат АВ220, т. е. все подготовительные цепи пуска разбирались. Машинист обратил внимание на то, что после включения контактора КМН маслопрокачивающий насос не работает. Осмотрев насос и его привод, машинист увидел, что якорь электродвигателя проворачивается с большим трудом. Впоследствии оказалось, что шестерни маслопрока-чивающего насоса были заклинены из-за попадания в насос шайбочки. Так как якорь электродвигателя МП практически не мог вращаться, то по его обмотке протекал ток, превышающий предельный, из-за чего автомат АВ220 выключался.

Читать еще:  Двигатель 417800 какой бензин

Случай девятый. Во время стоянки внезапно заглох дизель. Машинист предположил, что перегорела плавкая вставка предохранителя ПНЮ (см. рис. 100), вследствие чего потеряли питание катушки блок-магнита ЭМОД. На горевший в кабине свет он не обратил внимания, а когда снял предохранитель, то свет в кабине погас. Стало ясно, что предположение ошибочно, поскольку предохранитель П100 включен в общую минусовую цепь всех низковольтных потребителей, в том числе и ламп освещения.

Поставив предохранитель на место, машинист заметил, что при включенном автомате АВ220 контактор управления КУ выключен. Тогда он внимательно осмотрел панель автоматов, установленную на распределительном щите, и сразу обнаружил неисправность. Оказалось, что отвернулся шуруп крепления перемычки, соединяющей неподвижные контакты автоматов АВ220 и АВ251.

Так как общий плюсовый провод 200 был присоединен к неподвижному контакту автомата А В251 (рис. 238, а), то цепь питания катушек блок-магнита ЭМОД и контактора КУ оказалась оборванной между проводами 200 и 220. Другие потребители, подключенные к проводу 200 (в том числе и лампа освещения кабины машиниста), после прекращения работы дизеля продолжали получать питание от аккумуляторной батареи тепловоза. Отвернув четыре винта, машинист снял крышку с панели автоматов и надежно закрепил перемычку.

На ряде тепловозов ЧМЭЗ общий провод 26*0 присоединен к неподвижному контакту автомата АВ220 (рис. 238, б). В этом случае разъединение перемычки между неподвижными контактами автоматов АВ220 нАВ251 не привело бы к остановке дизеля, поскольку цепь питания катушек блок-магнита ЭМОД сохранилась бы, но цепи вентиляции, отопления и освещения оказались бы обесточенными (за исключением освещения аппаратной камеры).

Случай десятый. Перед пуском дизеля не включался контактор КУ. Машинист установил режимный переключатель «Управление» в положение «Наружный источник», но контактор КНИ не включился, т. е. напряжение на проводе 220 отсутствовало. Предположив, что неисправен автомат АВ220, и не имея времени на его замену, машинист поставил перемычку на панели РШ4 (см. рис. 153, а), соединив зажимы 203 и 351. В результате после включения автомата АВ351 напряжение к проводу 220 стало подводиться через провод 200 (см. рис. 100), контакты автомата АВ351, провод 351, перемычку, провод 203 и контакты ПСМЕ5, замкнутые в положении «Один тепловоз». В депо неисправный автомат был заменен, а перемычка снята.

Случай одиннадцатый. При сбросе позиции главной рукояткой контроллера не снижалась частота вращения коленчатого вала дизеля. Так как при наборе позиций увеличение частоты вращения вала происходило нормально, машинист сделал вывод, что электродвигатель СМД исправен. Визуально убедившись в том, что при переводе главной рукоятки контроллера на любую более низкую позицию реле РСМД2 включается, он предположил, что произошел обрыв в цепи питания якорной обмотки электродвигателя СМД из-за неисправности резистора Я17.

Не располагая временем для отыскания неисправности, машинист, соблюдая правила техники безопасности, поставил временную перемычку между задними левыми неподвижными контактами реле РСМД1 и РСМД2 (рис. 239, а), т. е. соединил провода 83 и 84, восстановив цепь питания якорной обмотки электродвигателя СМД (рис. 239, б). Частота вращения коленчатого вала дизеля стала снижаться нормально. Отметим правильные действия машиниста: зная расположение контактов и нумерацию присоединенных к ним проводов, он поставил наиболее удобную (небольшую по длине) перемычку; восстановил цепь так, что она осталась управляемой, поскольку собиралась только при включении реле РСМД2; оставил в цепи исправную часть резистора /?/7для ограничения тока, протекающего по якорной обмотке электродвигателя СМД.

Как только представилась возможность, бригада сняла щиток с панели резисторов, установленной с левой по ходу тепловоза стороны аппаратной камеры, и с помощью контрольной лампы проверила свое предположение, предварительно сняв временную перемычку. Один провод лампы машинист присоединил к минусовому ножу рубильника ОБА, а концом другого провода коснулся сначала среднего, потом верхнего хомутика, укрепленных на резисторе Л/7 (рис. 239, в).

В первом случае лампа загорелась, так как провод 26*2 был под напряжением, а во втором — нет, что указывало на обрыв цепи между проводами 26*2 и 83.

Ослабив верхний хомутик, машинист обнаружил в верхней части резистора несколько обгоревших витков. Он передвинул хомутик вниз и закрепил его на резисторе, после чего убедился с помощью контрольной лампы в наличии напряжения на проводе 83 и сделал соответствующую запись для ремонтников в журнале ТУ-152.

Случай двенадцатый. После перевода главной рукоятки контроллера на 1-ю позицию (реверсор находился в положении «Вперед») трогания с места не произошло. Машинист перевел реверсивную рукоятку контроллера в положение «Назад» и снова набрал 1-ю позицию, но тепловоз по-прежнему не двигался. Открыв нижние двери аппаратной камеры, машинист визуально убедился в том, что разворот реверсора происходит нормально, но после набора 1-й позиции поездные контакторы КП1—КПЗ (см. рис. 100) не включаются.

Подсоединив один провод от контрольной лампы к минусовому ножу рубильника ОБА, а другой — к зажиму 218 на панели РШ4 в аппаратной камере, машинист убедился в наличии напряжения на проводе 218 (лампа загорелась) и понял, что неисправность следует искать в цепи за этим проводом (контакты Р1 и Р2 исправны).

Для быстрого выхода из положения машинист, ориентируясь по электрической схеме тепловоза ЧМЭЗ, поставил временную перемычку между подвижным контактом КМ7 и зажимом 26*5 на панели К1 (рис. 240). В результате при переводе главной рукоятки контроллера на 1-ю позицию контакторы КП1—КПЗ включились, а при закрытых дверях аппаратной камеры включился и контактор КБ — тепловоз пришел в движение.

Рис. 239. Монтажные схемы реле РСМД! и РСМД2 (а), цепи изменения частоты вращения коленчатого вала дизеля (б) и схема подключения контрольной лампы для определения места обрыва цепи якорной обмотки электродвигателя СМД (в)

Ранее отмечалось, что в отличие от схем отечественных тепловозов на электрической схеме тепловоза ЧМЭЗ зажимы панелей не обозначены, поэтому от локомотивных бригад требуется хорошее знание расположения проводов и зажимов. Из рис. 240 видно, что закороченный перемычкой участок цепи состоит из двух проводов 205: один идет от подвижного контакта КМ7 к зажиму 205 на панели РШ4, а другой соединяет зажимы 205 панелей РШ4 и К1. Как выяснилось впоследствии, именно во втором проводе и произошел излом (на рис. 240 место излома обозначено крестиком).

Рис. 240. Монтажная схема панели зажимов К1

В данном случае машинист мог с помощью контрольной лампы убедиться в наличии напряжения на зажиме 205 панели РШ4 и поставить более удобную перемычку, соединив зажимы 204 и 205 на этой панели. Кстати, в дальнейшем он так и сделал, заменив неудобную перемычку, проходившую через открытую дверь кабины.

Случай тринадцатый. Тепловоз не трогался с места при включенных поездных контакторах. Поскольку требовалось срочно освободить станционный путь для приема поезда, машинист соединил перемычкой провода 204 и 232 (см. рис. 233), после чего контактор КВ включился, и тепловоз тронулся с места.

При последующем отыскании неисправности бригада обнаружила, что сработало реле заземления, размыкающие контакты Р32 которого не позволяли включиться контактору КВ. Как оказалось, реле включалось во время пуска дизеля из-за пробоя изоляции в пусковом контакторе КД1. На работу тепловоза в тяговом режиме после постановки перемычки это не влияло, однако реле все время оставалось во включенном положении благодаря механической защелке.

Почему же при включении реле РЗ не срабатывала защитная сигнализация, которая должна сразу же указать машинисту на неисправность такого рода? На тепловозе отсутствовала сигнальная лампа ЛСИ (см. рис. 100), а значит, не могли включиться реле защитной сигнализации РЗС и звуковой сигнал (зуммер). Машинист должен при приемке тепловоза проверять наличие и исправность соответствующих сигнальных ламп, включая вручную реле РБ1, РБ2 и РЗ (см. приложение 6).

Рис. 241. Схема обрыва цепи независимого возбуждения возбудителя

Случай четырнадцатый. Находящийся на станции тепловоз не трогался с места, хотя включались поездные контакторы и контактор КВ. Желая убедиться в том, что напряжение к независимой обмотке возбуждения возбудителя подведено, машинист подсоединил провод от контрольной лампы КЛ к зажиму 88 на панели РШ4 (рис. 241). Загоревшаяся лампа ввела машиниста в заблуждение — он предположил, что неисправность в самом возбудителе.

Локомотивные бригады должны помнить, что к каждому зажиму на панели РШ4 присоединено не менее двух проводов. При этом все внутренние провода идут к аппаратам, размещенным в камере, а все внешние (имеющие такие же номера) — к машинам и аппаратам, находящимся в машинном отделении тепловоза.

Так как при проверке контактор КБ был включен, т. е. замыкающие контакты КВ2 между проводами 205 и 201 были замкнуты, то внутренний провод 88 на панели РШ4 был под напряжением, и контрольная лампа горела. Но внешний провод 88, идущий от зажима на панели РШ4 к возбудителю, оказался оборван, причем у самого наконечника. Эту неисправность быстро нашел прибывший на станцию слесарь-электрик, а должен был обнаружить машинист!

Случай пятнадцатый. Бригада обратила внимание на то, что при нагретом дизеле систематически выключается автомат АВ220. Перешли на ручное управление холодильником, но автомат продолжал выключаться. Тогда стали поочередно отсоединять провода, идущие от катушек вентилей ВПЖ. Когда был снят провод с катушки контактора КМВХ, автомат перестал отключаться. При проверке контактора на стенде было обнаружено короткое замыкание в катушке КМВХ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector