Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Высокомоментных двигателей

Высокомоментных двигателей

Следующим шагом в развитии приводной техники стало появление высокомоментных двигателей вращательного движения, применение которых позволило вообще исключить механический редуктор из состава электроприводов постоянного тока, работающих на низких скоростях.

Высокомоментными называются двигатели постоянного тока с возбуждением от постоянных магнитов и электронной коммутацией обмоток, которые допускают многократную перегрузку по моменту. Для определения положения полюсов на роторе вентильного ВМД устанавливают дополнительные технические средства (например, датчики Холла, индуктивные и фотоэлектрические датчики). Обычно высокомоментные двигатели (ВМД) устойчиво работают на частотах вращения 0.1-1 1/мин, которые типичны для металлорежущих станов и промышленных роботов.

Основные преимущества ВМД определяются отсутствием в приводе редуктора:

— снижение материалоемкости, компактность и модульность конструкции;

— повышенные точностные характеристики привода благодаря отсутствию зазоров;

— исключение трения в механической трансмиссии позволяет существенно уменьшить погрешности позиционирования и нелинейные динамические эффекты на ползучих скоростях;

— повышение резонансной частоты.

ВМД выпускаются в настоящее время коллекторного и вентильного (иногда используется термин «безщеточного», либо «бесконтактного») типов.

Основные преимущества вентильных двигателей по сравнению с коллекторными:

— высокая надежность, большой срок службы, минимальные затраты на обслуживание (вследствие исключения искрения и износа щеток);

— улучшенные тепловые характеристики (так как тепло рассеивается на обмотках статора, а на роторе тепловыделяющие элементы отсутствуют), отсюда возможность использования проводов малого сечения;

— высокое быстродействие за счет высокого соотношения развиваемый момент/ момент инерции ротора;

— большая перегрузочная способность по моменту (типично Ммах/Мно,, = 8 ) в широком диапазоне регулирования скорости;

— близкие к линейным механические и регулировочные характеристики.

По сравнению с синхронными двигателями вентильные ВМД позволяют регулировать скорость вращения с помощью обратной связи, частота вращения не зависит от напряжения питания, нет проблемы выпадения из синхронизма.

Основной недостаток вентильных двигателей — наличие дорогостоящих магнитов и блока управления коммутацией обмоток, отсюда пониженный показатель мощность/цена и повышенные габариты. В современных модификациях эта проблема решается путем построения этих блоков на базе относительно дешевых интегральных микросхем.

В состав современных мехатронных модулях движения на основе ВМД обязательно входят также датчики обратной связи и иногда управляемые тормоза, что позволяет отнести такие ММД ко второму поколению. В качестве датчиков наиболее часто применяются фотоимпульсные датчики (инкодеры), тахогенераторы, резольверы и кодовые датчики положения. Принципиально важно, что модуль «двигатель-датчик» имеет единый вал, что позволяет сочетать высокие технические параметры и низкую стоимость.

Также модули данного типа могут применяться в нетрадиционных транспортных средствах: электромобилях, электровелосипедах, инвалидных колясках и т.п.

Использование вентильных двигателей (ВМД) позволяет заменить традиционную пару двигатель-механический преобразователь одним высокомоментным двигателем, исключив таким образом избыточный преобразователь. Пример мехатронного модуля движения на базе ВМД показан на рис.3.17. ВМД применяется здесь для вращения пово­ротного стола, который предназначен для позиционирования деталей при обработке на фрезерных, сверлильных и расточных станках .

Рис.3.17 Поворотный стол на базе высокомоментного двигателя:

1 – основание; 2 – поворотный стол; 3 – упорные подшипники; 4 – электродвигатель; 5 – ротор; 6 – планшайба; 7 – датчик положения; 8 – датчик скорости; 9 – гидротормоз.

Модуль состоит из основания 1 и собственно поворотного стола 2, опирающегося на упорные подшипники 3, встроенного электродвигателя 4, ротор 5 которого скреплен с планшайбой б, датчика положения 7, датчи­ка скорости 8 и гидротормоза 9, обеспечивающего фиксацию планшайбы в нужном положении. Безредукторное совмещение ротора электродвигателя и планшайбы позволяет полностью исключить люфт, увеличить точность позициони­рования стола и расширить его технологические возможности. При этом упрощается конструкция стола, уменьшается число деталей, повышается жесткость.

Группой «Мехатроника» в Санкт-Петербурге освоено производство мехатронных поворотных столов серии ПМС диаметром 200-1250 мм, с точностью позиционирования до 3″, максимальной частотой вращения до 12 мин -1 , максимальным моментом до 2500 Н·м.

Расстояние между компьютером верхнего уровня управле­ния и контроллерами интеллектуальных модулей может достигать не­скольких сотен метров. Обмен информацией и управляющими команда­ми между этими устройствами осуществляется через высокоскоростную компьютерную сеть.

Мехатронный модуль движения (ММД) — конструктивно и функционально самостоятельное изделие, включающее в себя механическую электрическую (электромеханическую) и информационную части которое можно использовать индивидуально и в различных комбинациях с другими модулями. По сравнению с МД в состав мехатронного модуля движения входит встроенное информационное уст­ройство. Информационное устройство включает датчики обратной связи и информации, а также электронные блоки для обработки и преобразования сигналов. Примерами таких датчиков являются фото­импульсные датчики (энкодеры), дающие информацию о скорости дви­жения и угловом перемещении , оптические линейки, вращающиеся трансформаторы и т.д.

ММД состоит из следующих частей:

Электродвигатель – электротехнический преобразователь электрической энергии в механическую.

Механический преобразователь – устройство, преобразующее параметры движения двигателя в требуемые параметры выходного звена.

В состав механического преобразователя входят:

Преобразователь движения (передача) – механизм, предназначенный для преобразования одного вида движения в другое, согласования скоростей и вращающих моментов двигателя и выходного звена мехатронного модуля.

Тормозное устройство – устройство, предназначенное для уменьшения скорости подвижного звена, останова и удержания его в неподвижном состоянии (может отсутствовать).

Люфтовыбирающий механизм – устройство, предназначенное для выборки зазора (мертвого хода) в некоторых видах преобразователей движения (может отсутствовать).

Информационное устройство – устройство, преобразующее контролируемую величину в сигнал, удобный для измерения, передачи, преобразования, хранения и регистрации, а также воздействия им на управляемые процессы.

Мехатронные модули движения (ММД) являются функциональными “кубиками”, из которых затем можно компоновать сложные мехатронные системы.

При этом главным признаком, отличающим ММД от общепромышленного электропривода, является введение электродвигателя в узел машины: электрошпиндель, мотор-шпиндель, электромеханизм линейного перемещения инструментов головки, поворотный глобусный или координатный стол, мотор-колесо и т.п.

Основную номенклатуру ММД, на основе которых в настоящее время создаются производственные машины и транспортные средства нового поколения, можно подразделить на четыре группы:

Читать еще:  Шкала температуры двигателя газель

1. Высокооборотные модули с максимальной частотой вращения от 9 000 до 250 000 мин -1 и мощностью от 0,1 до 30 кВт для металлорежущих станков, деревообрабатывающих машин, станков для сверления печатных плат, компрессоров и т.д. В этих модулях используются воздушные и электромагнитные подшипники. Основные преимущества выпускаемых электрошпинделей на магнитных подшипниках:

— отсутствие механических контактов и, как следствие, износа;

— возможность использования более высоких (по сравнению с традиционными конструкциями) скоростей;

— небольшая вибрация, отсутствие трения и снижение тепловых потерь;

— возможность изменения жесткости и демпфирующих характеристик системы;

— возможность работы в вакууме и вредных средах;

2. Низкооборотные модули с максимальной частотой вращения от 4 до 300 мин -1 , моментом от 10 до 2500 Η·м и точностью позиционирования до 3″ для поворотных столов станков, измерительных машин, оборудования для электронного машиностроения, узлов роботов и многоцелевых инструментальных головок.

3. Модули линейного движения с усилием от 10 до 5000 Η и скоростью до 32 м/с для приводов металлорежущих станков, промышленных роботов и измерительных машин, а также для запирающих устройств газо- и нефтепроводов.

4. Цифровые электроприводы с бесколлекторными синхронным и асинхронным двигателями мощностью до 10 кВт с моментом от 1 до 40 Η·м и высоким отношением момента к массе для приводов подачи высокопроизводительных станков и роботов, текстильных и деревообрабатывающих машин, приводов вентиляторов, насосов и т.д. Блок управления такими приводами создается на базе силовых интеллектуальных схем и встраивается в корпус или клеммную коробку электродвигателя.

Еще большие возможности применения ММД имеют машины нетрадиционной компоновки: обрабатывающие и измерительные машины на основе так называемой платформы Стюарта и мехатронных поворотных столов.

Главной особенностью современного этапа развития мехатронных модулей является интеллектуализация процессов управления их функциональными движениями. По сути речь идет о разработке принципиально нового поколения модулей, в которых осуществлена интеграция всех трех компонент — электромеханической, электронной и компьютерной.

Дата добавления: 2015-08-11 ; просмотров: 3310 ;

моментный двигатель

Русско-английский словарь по машиностроению . Академик.ру . 2011 .

  • моментальный
  • моментный загружатель

Смотреть что такое «моментный двигатель» в других словарях:

моментный двигатель — akimirkinis variklis statusas T sritis automatika atitikmenys: angl. erection torque motor; torque motor vok. Drehmomentmotor, m rus. моментный двигатель, m; моментный мотор, m pranc. moteur à couple, m ryšiai: sinonimas – momentinis variklis … Automatikos terminų žodynas

моментный мотор — akimirkinis variklis statusas T sritis automatika atitikmenys: angl. erection torque motor; torque motor vok. Drehmomentmotor, m rus. моментный двигатель, m; моментный мотор, m pranc. moteur à couple, m ryšiai: sinonimas – momentinis variklis … Automatikos terminų žodynas

Гидравлический двигатель — машина, преобразующая энергию потока жидкости в механическую энергию ведомого звена (вала, штока). По принципу действия различают Г. д., в которых ведомое звено перемещается вследствие изменения момента количества движения потока жидкости … Большая советская энциклопедия

Drehmomentmotor — akimirkinis variklis statusas T sritis automatika atitikmenys: angl. erection torque motor; torque motor vok. Drehmomentmotor, m rus. моментный двигатель, m; моментный мотор, m pranc. moteur à couple, m ryšiai: sinonimas – momentinis variklis … Automatikos terminų žodynas

akimirkinis variklis — statusas T sritis automatika atitikmenys: angl. erection torque motor; torque motor vok. Drehmomentmotor, m rus. моментный двигатель, m; моментный мотор, m pranc. moteur à couple, m ryšiai: sinonimas – momentinis variklis … Automatikos terminų žodynas

erection torque motor — akimirkinis variklis statusas T sritis automatika atitikmenys: angl. erection torque motor; torque motor vok. Drehmomentmotor, m rus. моментный двигатель, m; моментный мотор, m pranc. moteur à couple, m ryšiai: sinonimas – momentinis variklis … Automatikos terminų žodynas

moteur à couple — akimirkinis variklis statusas T sritis automatika atitikmenys: angl. erection torque motor; torque motor vok. Drehmomentmotor, m rus. моментный двигатель, m; моментный мотор, m pranc. moteur à couple, m ryšiai: sinonimas – momentinis variklis … Automatikos terminų žodynas

torque motor — akimirkinis variklis statusas T sritis automatika atitikmenys: angl. erection torque motor; torque motor vok. Drehmomentmotor, m rus. моментный двигатель, m; моментный мотор, m pranc. moteur à couple, m ryšiai: sinonimas – momentinis variklis … Automatikos terminų žodynas

ГОСТ Р 50369-92: Электроприводы. Термины и определения — Терминология ГОСТ Р 50369 92: Электроприводы. Термины и определения оригинал документа: 3 (электро) двигатель (электропривода): Электромеханический преобразователь, предназначенный для преобразования электрической энергии в механическую.… … Словарь-справочник терминов нормативно-технической документации

ПНЕВМОДВИГАТЕЛЬ — исполнительное устройство, преобразующее подводимую энергию сжатого воздуха в механическую (рис. П 28). Пневмодвигатель подразделяют на три группы: с возвратно поступательным движением (например, встряхивающий механизм формовочного станка), с… … Металлургический словарь

МОЙ МОТОЦИКЛ

При выборе мотоцикла покупатель чаще всего смотрит на единственный параметр — максимальную мощность. То есть сколько «лошадей» в нем. А на остальное особо внимания не обращает, конечно если это не особо опытный по этой части человек. И зачастую рождаются мифы о том, что мотор имеющий менее 100 л.с. «не едет» и прочая туфта.

Прежде чем сделать покупку, рекомендуем более внимательно изучить то, что ты хочешь и определиться конкретно для каких целей нужен мотоцикл и где на нем будешь ездить.

Итак поговорим о типах двигателей для мотоциклов:

На мототехнику в основном ставят бензиновые двигатели, хотя сейчас все чаще выпускают байки с електродвигателями — прогресс есть прогресс. Бывают еще и с дизельными движками, но их очень мало, эксклюзив.

«Несмотря на примитивность конструкции, 1-цилиндровый 4-тактный мотор воздушного охлаждения не сдает позиций на фоне более мощных и более продвинутых конкурентов. Причина – дешевизна в разработке и производстве. Недаром большинство китайских мотоциклов оснащают именнно такими агрегатами»

Бензиновые двигатели внутреннего сгорания бывают 2-тактными и 4-тактными. Двухтактники до сих пор используются в производстве малокубатурной техники. Благодаря простоте конструкции и отличному соотношению вес/мощность они заслуженно пользуются любовью в кругах скутеристов, любителей оффроуда и шоссейно-кольцевых гонок. Гражданские 2-тактные мотоциклы практически не выпускаются, за исключением некоторых 50- и 125-кубовых моделей. В целом, это неплохой выбор как для первого мотоцикла. Так как на них легче обучаться и привыкать к езде чем с кубатурой побольше, это для тех, у кого опыта, или нет или мало.

Читать еще:  4д33 двигатель технические характеристики

4-тактные двигатели технически более современны, у них сложнее конструкция, меньше вредных выбросов и ниже уровень потребления топлива. Их проще обслуживать, чем двухтактники. Современному 4-тактному мотору достаточно регулярной замены масла – и он будет безотказно служить тебе многие тысячи километров. Такими ДВС оснащаются 99% современных мотоциклов.

В отличие от автомобильного мира, в мотопроме существует намного большее количество вариантов компоновки моторов. Большинство авто оснащают 3- или 4-цилиндровым рядником, реже – 4-цилиндровым оппозитом. Все остальные вариации находятся за гранью финансовых возможностей большинства автолюбителей. С мотоциклами все интереснее. В диапазоне $10-20 тыс. доступны байки с самыми разными движками. Но как же выбрать и что будет полезнее?

Мощность или крутящий

«Для мотоцикла крайне важно наличие тахометра, чтобы райдер мог контролировать оптимальные обороты двигателя, где мощность и крутящий достигают максимальных значений»

Мы не будем рассматривать каждый движок до мелочей. Просто посмотрим, чем примечателен тот или иной механизм, какие у него есть достоинства и недостатки.

Крутящий – это произведение силы на длину плеча ее действия (измеряется в ньютон-метрах). Мощность – это произведение момента на его угловую скорость, то есть количество работы, произведенное на определенных оборотах (измеряется в лошадиных силах). Крутящий момент, создаваемый движком, зависит от площади поршня, радиуса кривошипа коленвала, давления внутри цилиндра и других параметров. Мощность – прежде всего от оборотов движка.

Чтобы получить одновременно мощный и моментный двигатель, нужно заставить большие поршни двигаться очень быстро, вращая длинные рычаги коленвала. К сожалению, это вещи взаимоисключающие. Намного проще раскрутить до бешеных оборотов маленькие поршни с коротким рабочим ходом.
Что важнее: высокая мощность или классный крутящий? Важны не их пиковые значения, которые указывает производитель в ТТХ мотоцикла, а распределение «лошадей» и ньютон-метров в рабочем диапазоне.

«Два диаметрально противоположных примера распределения мощности и крутящего. На первом графике изображены кривые 1584-кубовой воздушной вэшки Harley-Davidson, на втором – 4-цилиндрового жидкостного рядника Honda CBR1000RR. Большая вэшка Харли крайне неохотно крутится, достигая скромных 65 л.с. при 5000 об/мин. Зато у этого мотора очень много крутящего – целых 113 Нм! Правда, все ньютон-метры доступны в узком рабочем диапазоне, оптимальный режим работы движка – 2000-4000 об/мин. Рядник Хонды напротив очень любит, чтобы его крутили. На низких оборотах крутящего мало, мощности – еще меньше. Обе кривые растут в диапазоне от 2500 до 10000 об/мин, самый «сок» движка – отрезок от 7000 до 12000, когда он выдает максимум и «лошадей», и ньютон-метров. В любом случае, оптимальный рабочий режим мотора Хонды намного шире, чем у Харли»

Типы двигателей:

Моноцилиндр.

Самый простой и самый популярный вариант устройства мотоциклетного движка. Чаще всего его можно увидеть на различных эндуро, мотардах и кроссачах. Преимущества одноцилиндрового мотора: компактность, простота конструкции и обслуживания, хороший крутящий момент на низких и средних оборотах. Недостатки: ограничение по объему цилиндра, вибрации, ограниченный рабочий диапазон.

Параллельный твин.

Двигатель с двумя цилиндрами, установленными в ряд, можно встретить на круизерах, шоссейниках и кроссоверах. Преимущества: относительная простота обслуживания, эффективное охлаждение, хороший крутящий момент на средних оборотах. Недостатки: ограниченный рабочий диапазон, невысокая максимальная мощность.

V-твин.


«Воздушными» вэшками такого формата оснащают все Харли и прочие круизеры. Почему? Во-первых, такой движок красив. Также V-твины, правда, жидкостные, традиционно любят итальянские мотопроизводители, которые научились выжимать из них нешуточные ТТХ. Поэтому следует разделять «воздушники» и «водянки», которые очень сильно отличаются. Преимущества первых: отличный крутящий на низких оборотах, эстетичный внешний вид, простота конструкции. Недостатки: узкий рабочий диапазон, вибрации, недостаточное охлаждение заднего цилиндра. Жидкостные вэшки имеют такие плюсы: широкий рабочий диапазон, высокие мощность и крутящий, узость конструкции. Их минусы: сложность и часто дороговизна обслуживания.

V4.

Достаточно редкий и высокотехнологичный мотор, который очень любят в гонках MotoGP. Впрочем, используется не только на спортбайках, но и туристах. Преимущества: компактность, высокие мощность и крутящий, равномерная отдача ньютон-метров. Недостатки: навороченность конструкции, сложное ТО, высокая стоимость самого агрегата.
3-цилиндровый рядник.

Этот движок – экзотика в наших краях. Его используют Triumph, Benelli и MV Agusta (с недавних пор и Yamaha), комплектуя им свои стриты, спортбайки и туристы. Трехцилиндровый мотор – разумный компромисс между не очень мощным параллельным твином и мощным, но сложным 4-цилиндровым рядником. Преимущества: относительная компактность, небольшие вибрации, хорошие мощность и крутящий. Недостатки: отсутствие сервиса в Украине.
4-цилиндровый рядник.

Этот мотор устанавливают на быстрые байки. Главная особенность рядника – любовь к высоким оборотам. Такой двигатель можно и нужно крутить, только тогда он покажет все, на что способен. Преимущества: высокая мощность, минимум вибраций, эластичность, широкий выбор кубатуры – от 400 до 1450 см3. Недостатки: широта конструкции, сложное ТО, мало крутящего на низких оборотах.
Оппозит.

Эта компоновка и аббревиатура BMW – близнецы-братья. По сути, тот же V-твин, но с развернутыми на 180° цилиндрами. На самом деле немцы позаимствовали такую компоновку у англичан. В свою очередь, СССР украл ее у BMW, выпустив на просторы нашей бывшей необъятной родины популярные до сих пор «Днепры» и «Уралы». Преимущества оппозита: высокий крутящий момент, эффективное охлаждение цилиндров, низкий центр тяжести. Недостатки: ширина и сложность конструкции (в частности системы ГРМ).
Отдельно нужно сказать о единственном в своем роде 6-цилиндровом оппозите, который устанавливается на Honda Gold Wing. Этот 1832-кубовый мотор жидкостного охлаждения считается идеально сбалансированным (то есть в нем почти отсутствуют вибрации), у него низкий центр тяжести и отличный крутящий момент на низких и средних оборотах. Впрочем, такой рабочий объем делает движок почти автомобильным по своим характеристикам.

Читать еще:  Вибрация коробки двигателя на оборотах

Какие типы двигателей бывают: 3 комментария

Спасибо за статью автору, видно что старались при написании. Но очень много откровенно некомпетентных высказываний. Например, про V-твин, разница с теми итальянцами, про которых речь, не в том что одни воздушники, а другие жидкостники. Не из-за этого огромная разница в ТТХ. Разница в угле развала цилиндров, с углом около 45 градусов — это круизеры, чопперы, реже дорожники. У таких моторов хороший крутящий момент, но крутятся неохотно. с углом развала 90 градусов, под прямым углом, уже гораздо больше мощности и крутильности, но правда нет той обожаемой неравномерности вспышек и утробного звучания настоящего мотоцикла.

Что такое крутящий момент и почему его показатель важнее лошадиных сил?

Компания Cadillac отказалась от привычной маркировки своих автомобилей и ввела классификацию двигателей не по мощности, а по крутящему моменту. Что это за характеристика и почему она так важна для мотора?

Подавляющее большинство автопроизводителей в маркировке своих двигателей использует мощность или объем камер сгорания. Обе этих характеристики уже устарели. Если 50 лет назад тяга карбюраторных моторов зависела от расточки цилиндров, то сейчас на первый план выходят новые технологии. При одинаковом объеме камер сгорания мощность вырастает в два-три раза. К примеру, сейчас небольшие 2,0-литровые рядные моторы BMW или Volvo могут иметь мощность свыше 400 лс. Тем самым, бензиновые 4-цилиндровые турбированные моторы небольшого объема сейчас располагают такой же мощностью и тягой, как 8-цилиндровые атмосферники 15-летней давности, потому как оснащены помимо ступенчатого наддува еще и сложной системой впрыска.

Но и лошадиные силы уже недостаточно адекватно описывают существующие характеристики двигателя. Автомобиль с небольшой мощностью может казаться значительно резвее и интереснее на дороге, чем другой более мощный собрат. К примеру, дизельные агрегаты намного опережают бензиновые по тяге, а значит, показывают лучшую динамику.

В общем, потребовалась иная характеристика, которая бы могла адекватно описывать возможности современного мотора. И автопроизводители видят ее в крутящем моменте.

Откуда берутся «лошадиные силы»?

Измерять мощность моторов в «лошадиных силах» предложил знаменитый английский изобретатель Джеймс Уатт в 1789 году. Во времена начала промышленной революции в Англии на рудниках, в портах и мельницах в качестве источника силы для подъемных машин использовались лошади. Их запрягали в лебедку крана и гоняли по кругу.

Запряженное в механизм животное весом около 500 кг, вышагивая по кругу и натягивая канат через систему блоков, могло обеспечить работу крана, равную подъему груза в 90 кг со скоростью 1 метр в секунду. Груз поднимали бочками или кулями весом от 140,9 до 190,9 кг каждый. Тем самым, за 8 часов работы лошадь, ковыляя вокруг лебедки со скоростью в 3 км\ч, не утруждаясь могла перегрузить 33 000 фунтов, что равняется почти 14 тоннам. Эту работу и прописали как эталон «лошадиной силы».

Паровые машины могли совершать такую же работу гораздо быстрее, потому как имели мощность в несколько лошадиных сил. Тем самым, в определении Джеймса Уатта, мощность — это не спортивная динамика машины, не приемистость, а работа, совершенная в единицу времени.

А что же такое крутящий момент?

В двигателе внутреннего сгорания применяется тот же принцип. Только силой, толкающей поршень, является энергия взрывов смеси бензина и воздуха. Поршень аналогичен той самой уаттовской лошади. Он раскручивает коленвал, а дальше через систему валов трансмиссии передает движение на колеса. Чем быстрее он вращается, тем выше мощность и больше работы выполнит мотор.

Если силу давления поршней умножить на длину рычага кривошипа, то получим крутящий момент, от которого зависит тяга мотора. Она выражается в Ньютонметрах (1 Нм равен силе в 1 ньютон, умноженной на рычаг в 1 метр). Чем длиннее рычаги, тем больше тяги выдает мотор.

Если у мотора высокий крутящий момент, то колеса за единицу времени раскручиваются быстрее. Автомобиль приобретает больше динамики.

Ураганный разгон

Итак, крутящий момент это очень важная характеристика, от которой зависит динамика машины. Чем выше крутящий момент, тем «лошади» под капотом становятся сильнее. С помощью крутящего момента определяется так же эластичность мотора, то есть его способность обеспечивать одинаковую тягу в большом диапазоне оборотов. В особенности важно, чтобы высокий крутящий момент был доступен почти сразу после старта. Тогда будет ощущаться эмоциональное ускорение автомобиля.

Ну а лошадиные силы нужны для другого. Они выражают способность мотора автомобиля сопротивляться ветровым и прочим нагрузкам. Высокая мощность отражается в основном на максимальной скорости машины.

Вообще, «лошадиные силы» очень ненадежная характеристика, зависимая от множества факторов. Эта единица измерений давно устарела. С помощью хитрых программ управления двигателем количество «лошадиных сил» можно прибавить или уменьшить, чем и пользуются многие производители, искусственно раздувающие мощность мотора.

Поэтому количество Нм крутящего момента в маркировке моторов гораздо более информативная характеристика.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector