Sw-motors.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простой многотопливный мотор вытеснит привычный двигатель внутреннего сгорания

Простой многотопливный мотор вытеснит привычный двигатель внутреннего сгорания

Новый многотопливный двигатель готов к массовому производству. При той же мощности, новый двигатель более чем в 2 раза легче ДВС

Компания Cyclone Power Technologies объявила о завершении разработки и тестирования многотопливного двигателя нового типа. В настоящее время начался этап коммерциализации новинки, а также ее сертификации для автомобильной промышленности. Новый тип двигателя под названием Waste Heat Engine (WHE) является устройством для превращения тепловой энергии сгорающего топлива в механическую работу. Собственно, то же самое делает и двигатель внутреннего сгорания (ДВС), но в отличие от него WHE – это двигатель внешнего сгорания.

Принцип работы WHE очень прост: во внешней камере сгорания происходит нагрев теплоносителя, деионизированной воды, которая в свою очередь толкает поршни или крутит турбину. КПД WHE не превышает таковой у дизельного двигателя, однако двигатель внешнего сгорания имеет несколько преимуществ.

Прежде всего, WHE может потреблять любое топливо: жидкое или газообразное. Это может быть этанол, дизельное топливо, бензин, уголь, биомасса или их смеси – в общем, все что угодно, включая тепло солнечного света, отработанного пара и т.д. Например в первоначальных тестах использовалось топливо, получаемое из кожуры апельсина, пальмового или хлопкового масла, куриного жира. При этом биотопливо можно не разбавлять нефтяным, а значит выброс двигателя WHE может быть более чистым. Поскольку WHE способен работать при относительно низкой температуре в 225 градусов Цельсия, он может использовать для работы самые разные источники тепла.

Одно из главных преимуществ WHE – меньшее количество деталей и более простое устройство, чем у ДВС, рассказывает cnews.ru . Внешнее сгорание не требует сложной системы клапанов и газораспределительного механизма, хотя из-за высокого давления необходимо применять высокопрочные материалы. В целом, WHE-DR намного легче традиционного ДВС. Так, типичный 4-цилиндровый блок цилиндров ДВС весит около 90 кг, в то время, как аналогичный алюминиевый блок цилиндров WHE весит около 35 кг.

Стоимость изготовления WHE должна быть не выше, чем стоимостьизготовления аналогичного по мощности ДВС, но при этом новый двигатель будет легче и сможет использовать самые дешевые виды топлива.

Небольшое автомобильное шасси с двигателем WHE мощностью 330 л.с. В центре баки для различных видов топлива: угольный порошок, сжиженный газ (водород, метан и т.д.), жидкое топливо (бензин, биотопливо и т.д.).

Двигатели WHE можно использовать во всем диапазоне мощностей. В частности, небольшие электрогенераторы мощностью от 1 кВт до 10 кВт будут иметь небольшие размеры и смогут питаться любым видом топлива, что крайне важно для аварийных источников энергии. Такие же двигатели можно использовать для небольшой техники, вроде газонокосилок, или составить их в пакеты для применения в промышленности, на морских судах и т.д.

Двигатели WHE среднего размера мощностью 100-400 л.с. идеально подойдут для автомобилей и небольших лодок, а большие двигатели мощностью от 400 до 1000 л.с. – для кораблей.

Благодаря отсутствию дыма, вибрации, меньшему шуму при работе и более экологичному выхлопу, двигатели внешнего сгорания могут использоваться для энергоснабжения городских поездов и других видов общественного транспорта.

Линейные двигатели, линейное движение

В высокодинамичных автоматизированных системах наши линейные серводвигатели SL2 или электроцилиндры CMS.. обеспечивают необходимое линейное движение. При этом серия SL2 обходится без механических передающих элементов и быстроизнашивающихся деталей. Благодаря роторам на постоянных магнитах нарастание усилия у наших электроцилиндров в пять раз быстрее, чем у обычных пневмоцилиндров, а благодаря патентованной системе смазки погружением они не требуют технического обслуживания. Убедитесь сами!

  • Что такое линейные двигатели?
  • Как работает линейный двигатель?
  • Наше предложение: Линейные серводвигатели от SEW-EURODRIVE
  • Что такое линейные цилиндры?
  • Наше предложение: Электроцилиндры от SEW-EURODRIVE

Что такое линейные двигатели?

Линейный двигатель является вариантом привода, который отличается от ротационного двигателя: В отличие от ротационной машины линейный двигатель не создает вращательного движения у приводимого объекта, а перемещает его прямолинейно или вдоль криволинейной траектории. Линейный двигатель применяется в тех случаях, когда динамики, развиваемой ротационным серводвигателем, недостаточно и когда вместо этого нужно реализовать прямое поступательное движение (линейное движение). Так бывает, например, когда требуется непосредственный привод (линейные двигатели) или при точных процессах перемещения (линейные цилиндры).

Как работает линейный двигатель?

Принцип действия линейных двигателей выводится из принципа действия ротационных двигателей. В отличие от ротационных приводов у линейного двигателя часто перемещается активная часть, через которую идет ток, тогда как электрически пассивная часть неподвижна. При этом „электрически пассивная“ означает, что магнитное поле, как правило, создается постоянными магнитами, которые можно составлять в ряд произвольным образом. Реактивные силы должны поглощаться станиной машины или установкой.

В то время как ротационным двигателям нужны передающие элементы (ремни, цепи и т. п.), чтобы из вращательного движения опосредованно получить поступательное, линейные приводы позволяют реализовать движение и тяговые усилия непосредственно. Поэтому линейные двигатели еще называют прямыми (непосредственными) приводами.

Линейные двигатели могут развивать очень большие ускорения (до 6 g) и скорости перемещения до 13 м/с (48 км/ч). Поэтому они особенно хорошо подходят для применения в станках, системах позиционирования, манипуляторах и обрабатывающих центрах.

Линейные серводвигатели от SEW-EURODRIVE

С почти не подверженными износу и не требующими технического обслуживания синхронными линейными серводвигателями SL2 SEW-EURODRIVE предлагает высокоэффективные решения для привода. Прямые приводы с конвекционным или принудительным охлаждением особенно подходят для задач манипулирования, систем перекладки и операций обработки в движении. У нас можно приобрести первоклассные линейные двигатели, которые идеально подойдут для решения ваших задач.

Читать еще:  Что такое двух тактный двигатель

Что такое линейные цилиндры?

Линейные цилиндры или электроцилиндры – это электрические перемещающие агрегаты, способные прямолинейно выдвигать и обратно задвигать шток. К тому же электроцилиндры являются мощной альтернативой пневмо- и гидроцилиндрам.

В электроцилиндрах в качестве привода используется электродвигатель. Как правило, это серводвигатель. В некоторых случаях двигатель соединен с редуктором; но чаще всего двигатель создает движение напрямую с помощью ходового винта. За счет вращения налево/направо ходовой винт может задвигаться и выдвигаться. Ограничение перемещения обеспечивается самим приводимым механизмом, а иногда и с помощью конечного выключателя. Электроцилиндры можно использовать для создания тяговых или сжимающих усилий.

В сравнении с гидро- или пневмоцилиндрами монтаж электроцилиндров очень прост, поскольку нужно лишь подвести электропитание – дорогостоящих насосов и компрессоров нет. К тому же электроцилиндры обычно компактнее, чем оба другие варианта, и поэтому их проще интегрировать в систему. Кроме того, при применении электроцилиндров вы выигрываете от преимущества по издержкам, поскольку отсутствует вся система высокого давления (питание, очистка, шланги и т. д.). В то время как гидро- и пневмоцилиндры даже в состоянии покоя нуждаются в давлении для удержания положения, электроцилиндры за счет шага резьбы ходового винта обладают эффектом самоторможения. Это позволяет им оставаться неподвижными в том или ином положении. Компактность достигается следующим образом:

  • за счет короткого ходового винта в соосной компоновке;
  • за счет высокой степени интеграции двигателя (и редуктора);
  • или за счет параллельной компоновки, при которой двигатель установлен над приводимым ходовым винтом (и при необходимости подсоединяется через редуктор).

Электроцилиндры от SEW-EURODRIVE

SEW-EURODRIVE предлагает вам электроцилиндры серии CMS.., смазываемые пластичной смазкой или погружением в масляную ванну. Преимущество патентованной системы смазки погружением состоит в том, что это смазка на весь срок службы. То есть периодическое смазывание ходового винта не требуется.

Принцип работы ДВС: Виды двигателей, Устройство двигателя, Рабочий цикл ДВС

Двигатель внутреннего сгорания — один из ключевых элементов конструкции транспортного средства. Он представляет собой внушительный агрегат, принцип работы двигателя внутреннего сгорания основывается на изменении энергии для действия определенных частей агрегата.

Виды моторов

Существует три вида двигателей, встречаемых в транспортных средствах:

  • поршневой
  • роторно-поршневой
  • газотурбинный

Большой популярностью пользуется первый вариант моторов. На некоторые модели автомобилей устанавливают так поршневые двигатели с четырьмя тактами. Вызвана такая популярность тем, что подобные агрегаты стоят дешевле, имеют небольшой вес и подходят для использования практически во всех машинах вне зависимости от производства.

Если говорить простыми словами, то двигатель автомобиля — это особый механизм, способный изменить энергию тепла, превратив ее в механическую энергию, благодаря чему удается обеспечить работу множества элементов конструкции автомобиля, а также его систем.

Изучить принцип действия мотора не составит труда. Например, поршневые ДВС делятся на двух- и четырехтактные агрегаты. Четырехтактными двигатели называют потому, что в одном рабочем цикле элемента поршень двигается четыре раза (такта). Подробнее о том, что представляют собой такты, написано далее.

Устройство мотора

Прежде, чем разбираться с принципом работы, стоит сначала понять, как устроен силовой агрегат и что входит в его конструкцию. Так как поршневые считаются наиболее востребованными, рассматриваться будет именно такое устройство. К основным деталям следует отнести:

  1. Цилиндры, образующие отдельный блок
  2. Головку блока с ГРМ
  3. Кривошипно-шатунный механизм

Последний приводит в движение коленчатый вал, заставляя его вращаться. Механизм передает валу энергию, получаемую от двигающегося поршня, который в несколько тактов меняет свое положение. Движение поршня регулирует энергия тепла, возникающая в результате горения топлива.

Невозможно представить и организовать движение силового агрегата без установленных в нем механизмов. Так, например, ГРМ меняет положение клапанов, за счет чего удается обеспечить регулярную подачу топлива, впуская и выпуская определенные составы. Система поступления новых газов и выхода отработавших налажена.

Работа двигателя возможна только при одновременной работе всех включенных в конструкцию деталей, механизмов и других элементов. Также вместе с ними должны бесперебойно действовать следующие системы:

  • зажигания, основная роль которой заключается в воспламенении топлива,
  • содержащего также воздух;
  • впускная, регулирующая своевременную подачу воздуха внутрь цилиндра;
  • топливная, благодаря которой удается обеспечить подачу топлива для сгорания и дальнейшей работы транспорта;
  • система смазки, снижающая износ трущихся деталей конструкции во время их работы;
  • выхлопная, посредством действия которой удается удалить отработавшие газы, в результате чего снижается их токсичность.

Также работает система охлаждения, регулирующая температуру внутри агрегата и следящая за тем, чтобы она была оптимальной.

Рабочий цикл ДВС

Основной цикл мотора подразумевает выполнение четырех основных тактов. Именно о них и пойдет речь дальше по тексту.

Первый такт: впуск

Начальный — движение кулачков, которые являются частью конструкции распределительного вала. Они меняют воздействуют на клапан впуска, заставляя его открыться.

Далее, вслед за открывшимся клапаном, с места двигается поршень. Деталь постепенно перемещается из крайнего верхнего положения в крайнее нижнее. Воздух внутри цилиндра в связи с уменьшением пространства поршнем становится более разреженным, благодаря чему становится возможным поступление подготовленной рабочей смеси.

После этого поршень начинает действовать на коленвал через шатун, вследствие чего вал поворачивается на 180 градусов. Сам поршень уже достигает своего критического нижнего положения, и на этом моменте начинается второй такт.

Читать еще:  Двигатель iveco f1c характеристики

Второй такт: сжатие

Он подразумевает дальнейшее сжатие смеси, находящейся внутри цилиндра. Клапан впуска закрывается, и поршень меняет свое направление, двигаясь вверх. Воздух в связи с уменьшением пространства начинает сжиматься, а рабочая смесь — нагреваться. Когда второй такт подходит к концу, в действие приходит система зажигания. Ее основное назначение — подача на свечу заряда электричества для образования искры. Именно эта искра поджигает сжатую смесь из топлива и воздуха, приводя к ее воспламенению.

Отдельно стоит рассмотреть, как зажигается топливо у дизельного ДВС. Как только завершается сжатие, начинает поступать мелкораспыленное дизельное топливо через форсунку внутрь камеры. Впоследствии горючее вещество перемешивается с воздухом внутри, благодаря чему происходит воспламенение.

Что касается карбюраторного двигателя со стандартным топливом, то на втором такте коленчатый вал успевает сделать полный оборот.

Третий такт: рабочий ход

Третий такт называется рабочим ходом. Газы, оставшиеся после сгорания смеси, начинают толкать поршень, перемещая его вниз. Полученная деталью энергия передается коленвалу, и тот снова поворачивается, но уже на половину оборота.

Четвертый такт: выпуск

Четвертый такт — выпуск оставшихся газов. Когда такт только начинается, кулачок меняет положение на этот раз выпускного клапана, открывая его. Это способствует началу движения поршня наверх, вследствие чего из цилиндра начинают выходить отработавшие газы.

Интересно, что на современных моделях транспортных средств ДВС оборудованы не одним цилиндром, а несколькими. Благодаря их слаженной работе обеспечивается более качественная работа мотора и систем машины. При этом в каждом цилиндре единовременно выполняются разные такты. Так, например, в одном цилиндре вовсю идет рабочий ход, а во втором — коленчатый вал еще только совершает оборот. Подобная конструкция также:

  • избавляет от ненужных вибраций;
  • уравновешивает силы, которые действуют на работу коленвала;
  • организует ровную работу мотора.

Ввиду компактности двигатели с несколькими цилиндрами изготавливают не рядными, а V-образными. Также существует форма оппозитных двигателей, которые часто можно встретить на автомобилях производства Subaru. Такое решение позволяет сэкономить много места под капотом.

Как работает двухтактный мотор

Выше было упомянуто, что поршневые двигатели делятся как на 4-тактные, так и на 2-тактные. Принцип работы вторых немного отличается от того, что был описан ранее. Да и само устройство такого агрегата значительно проще предыдущей конструкции. В двухтактном агрегате всего два окна в цилиндре — впускное и выпускное. Второе расположено чуть выше первого, и сейчас будет объяснено, для чего это.

Поршень при начале первого такта, до этого перекрывавший впускное окно, начинает двигаться наверх, в результате чего перекрывает собой окно впуска топлива. Поршень в это же время продолжает опускаться, что приводит к сжатию рабочей смеси. Как только деталь достигает нужного положения, на свече образуется первая искра, и созданная смесь тут же поджигается, воспламеняясь. Впускное окно к этому моменту уже открывается. Оно пропускает очередную порцию топлива и воздуха, продолжая работу механизма.

Начало второго такта характеризуется сменой направления движения поршня — он начинает перемещаться вниз. На него действуют газы, стремящиеся расширить имеющееся пространство. Поршень перемещается, открывая впускное окно, и оставшиеся после сгорания смеси газы уходят, пропуская внутрь новую порцию топлива.

Какая-то часть рабочей смеси также покидает цилиндр через открытый выпускной клапан. Поэтому становится понятным, почему двухтактные двигатели требуют такого количества топлива.

Преимущества и недостатки

Преимуществом двухтактных поршневых агрегатов является достижение большой мощности при небольшом рабочем объеме, если сравнивать их с четырехтактными. Однако владелец авто будет страдать от внушительных расходов топлива, из-за чего в скором времени в его голове возникнет идея поменять агрегат.

Также плюсами двухтактных ДВС можно назвать простую конструкцию, понятную и равномерную работу, маленький вес и компактный размер. К минусам следует отнести грязный выхлоп, нехватку различных систем, а также быстрый износ деталей конструкции. Довольно часто владельцы машин с таким двигателем жалуются на перегрев агрегата и его поломку.

Импульсные детонационные двигатели как будущее ракет и авиации

Существующие двигательные установки для авиации и ракет показывают весьма высокие характеристики, но вплотную приблизились к пределу своих возможностей. Для дальнейшего повышения параметров тяги, создающего задел для развития авиационной ракетно-космической отрасли, необходимы другие двигатели, в т.ч. с новыми принципами работы. Большие надежды возлагаются на т.н. детонационные двигатели. Подобные системы импульсного класса уже испытываются в лабораториях и на летательных аппаратах.

Физические принципы

В существующих и эксплуатируемых двигателях на жидком топливе используется дозвуковое горение или дефлаграция. Химическая реакция с участием топлива и окислителя образует фронт, перемещающийся по камере сгорания с дозвуковой скоростью. Такое горение ограничивает количество и скорость реактивных газов, истекающих из сопла. Соответственно, ограничивается и максимальная тяга.

Альтернативой является детонационное горение. В этом случае фронт реакции перемещается со сверхзвуковой скоростью, образуя ударную волну. Подобный режим горения увеличивает выход газообразных продуктов и обеспечивает повышенную тягу.

Детонационный двигатель может быть выполнен в двух вариантах. Одновременно разрабатываются импульсные или пульсирующие двигатели (ИДД / ПДД) и ротационные / вращающиеся. Их отличие заключается в принципах горения. Ротационный двигатель поддерживает постоянную реакцию, а импульсный работает за счет последовательных «взрывов» смеси топлива и окислителя.

Читать еще:  Двигатели с числом оборотов 10000

Импульсы образуют тягу

В теории, по своей конструкции ИДД не сложнее традиционного прямоточного воздушно-реактивного или жидкостного ракетного двигателя. Он включает камеру сгорания и сопловой аппарат, а также средства подачи топлива и окислителя. При этом накладываются особые ограничения на прочность и стойкость конструкции, связанные с особенностями работы двигателя.

Во время работы форсунки подают в камеру сгорания топливо; окислитель подводится из атмосферы помощи воздухозаборного устройства. После образования смеси происходит воспламенение. За счет правильного подбора компонентов топлива и пропорций смеси, оптимального способа воспламенения и конфигурации камеры образуется ударная волна, движущаяся в направлении сопла двигателя. Текущий уровень технологий позволяет получить скорость волны до 2,5-3 км/с с соответствующим повышением тяги.

ИДД использует пульсирующий принцип работы. Это означает, что после детонации и выхода реактивных газов камера сгорания продувается, вновь наполняется смесью – и следует новый «взрыв». Для получения высокой и стабильной тяги этот цикл должен осуществляться с большой частотой, от десятков до тысяч раз в секунду.

Сложности и преимущества

Главным преимуществом ИДД является теоретическая возможность получения повышенных характеристик, обеспечивающих превосходство над существующими и перспективными ПВРД и ЖРД. Так, при той же тяге импульсный двигатель получается компактнее и легче. Соответственно, в тех же габаритах можно создать более мощную установку. Кроме того, такой двигатель проще по своей конструкции, поскольку не нуждается в части приборного оснащения.

ИДД работоспособен в широком диапазоне скоростей, от нулевых (при старте ракеты) до гиперзвуковых. Он может найти применение в ракетно-космических системах и в авиации – в гражданских и военных областях. Во всех случаях его характерные особенности позволяют получить те или иные преимущества перед традиционными системами. В зависимости от потребностей, возможно создание ракетного ИДД, использующего окислитель из бака, или воздушно-реактивного, принимающего кислород из атмосферы.

Впрочем, имеются существенные недостатки и затруднения. Так, для освоения нового направления приходится проводить различные достаточно сложные исследования и опыты на стыке разных наук и дисциплин. Специфический принцип работы предъявляет особые требования к конструкции двигателя и ее материалам. Ценой высокой тяги оказываются повышенные нагрузки, способные повредить или разрушить конструкцию двигателя.

Сложной задачей является обеспечение высокой скорости подачи топлива и окислителя, соответствующей необходимой частоте детонаций, а также выполнение продувки перед подачей топлива. Кроме того, отдельной инженерной проблемой является запуск ударной волны при каждом цикле работы.

Следует отметить, что к настоящему времени ИДД, несмотря на все усилия ученых и конструкторов, не готовы к выходу за пределы лабораторий и полигонов. Конструкции и технологии нуждаются в дальнейшей отработке. Поэтому пока не приходится говорить о внедрении новых двигателей в практику.

История технологии

Любопытно, что принцип импульсного детонационного двигателя впервые был предложен не учеными, но писателями-фантастами. К примеру, подлодка «Пионер» из романа Г. Адамова «Тайна двух океанов» использовала ИДД на водородно-кислородной газовой смеси. Схожие идеи фигурировали и в других художественных произведениях.

Научные изыскания по теме детонационных двигателей начались чуть позже, в сороковых годах, причем пионерами направления были советские ученые. В дальнейшем в разных странах неоднократно предпринимались попытки создания опытного ИДД, но их успех серьезно ограничивало отсутствие необходимых технологий и материалов.

31 января 2008 г. агентство DARPA министерства обороны США и Лаборатория ВВС начали испытания первой летающей лаборатории с ИДД воздушно-реактивного типа. Оригинальный двигатель установили на доработанном самолете Long-EZ от фирмы Scale Composites. Силовая установка включала четыре трубчатые камеры сгорания с подачей жидкого топлива и забором воздуха из атмосферы. При частоте детонаций 80 Гц развивалась тяга ок. 90 кгс, чего хватало только для легкого летательного аппарата.

Эти испытания показали принципиальную пригодность ИДД для применения в авиации, а также продемонстрировали необходимость совершенствования конструкций и повышения их характеристик. В том же 2008 г. опытный самолет отправили в музей, а DARPA и смежные организации продолжили работу. Сообщалось о возможности применения ИДД в перспективных ракетных комплексах – но пока они не разработаны.

В нашей стране тематика ИДД изучалась на уровне теории и практике. К примеру, в 2017 г. в журнале «Горение и взрыв» появилась статья об испытаниях детонационного прямоточного двигателя на газообразном водороде. Также продолжаются работы по ротационным детонационным двигателям. Создан и испытан РДД на жидком топливе, пригодный для использования на ракетах. Прорабатывается вопрос использования таких технологий в авиационных двигателях. В этом случае детонационная камера сгорания интегрируется в состав турбореактивного двигателя.

Перспективы технологии

Детонационные двигатели представляют большой интерес с точки зрения применения в разных областях и сферах. За счет ожидаемого прироста основных характеристик они могут, как минимум, потеснить системы существующих классов. Однако сложность теоретической и практической разработки пока не позволяет им дойти до использования на практике.

Впрочем, в последние годы наблюдаются положительные тенденции. Детонационные двигатели в целом, в т.ч. импульсные, все чаще появляются в новостях из лабораторий. Развитие этого направления продолжается, и в будущем сможет дать желаемые результаты, хотя сроки появления перспективных образцов, их характеристики и области применения пока остаются под вопросом. Однако сообщения последних лет позволяют смотреть в будущее с оптимизмом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector