Sw-motors.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основными причинами увеличения тока холостого хода являются

Основными причинами увеличения тока холостого хода являются

асинхронных двигателей при недопустимо высоком значении тока холостого хода

Настоящая инструкция распространяется на 3-х фазные электрические машины мощностью до 400 кВт и рабочим напряжением до 660В.

В инструкции рассмотрены причины вызывающие увеличение тока холостого хода. Даны указания по испытаниям двигателей на холостом ходу и порядок пересчёта обмоточных данных с использованием результатов испытаний, обеспечивающих снижение тока холостого хода до необходимой величины. Даны рекомендуемые значения токов холостого хода.
Основными причинами увеличения тока холостого хода являются:

  • чрезмерное «распушение» сердечника статора;
  • неправильная сборка двигателя (ротор развернут относительно статора);
  • слишком большой зазор между ротором и статором (ротор проточен или от другого двигателя);
  • листы сердечника статора замыкают между собой (результат задевания ротора за статор);
  • нарушение изоляции между листами сердечника статора;
  • статор намотан неправильно (уменьшено количество витков в пазу, увеличено количество параллельных ветвей в фазе, уменьшен шаг и т. д.)

Будем считать, что сердечник статора не имеет затиров, обмотка статора уложена и соединена правильно, двигатель собран правильно, и тем не менее ток холостого хода превышает предельно допустимое значение. В подавляющем большинстве случаев причиной является разрушение изоляции между листами сердечника статора во время отжига двигателей в печи перед демонтажем обмотки.

Все отечественные двигатели начиная с 1992 года и двигатели иностранных фирм с 1985 года изготавливаются из электротехнической стали с лаковым покрытием, которое частично разрушается во время отжига при температуре 380 градусов (раньше изоляцией служила оксидная плёнка). Это приводит к увеличению потерь в сердечнике статора, его нагреву, и как следствие увеличению тока холостого хода.

На рисунке 1 показаны кривые намагничивания сердечника статора с хорошей изоляцией (кривая 1) и с нарушенной изоляцией (кривая 2) листов. В определенном масштабе так же изменяется I хх двигателя от приложенного напряжения.

На рисунке видно, что при напряжении 380 В. ток холостого хода при хорошем сердечнике значительно ниже чем с сердечником с нарушенной изоляцией. Для наглядности возьмём конкретный двигатель:

АИР 180S-4, 22 кВт. 380 В. 43 А. 1460 об/мин., имеющего следующие обмоточные данные:

  • тип обмотки — двухслойная
  • шаг по пазам — 1-11
  • диаметр провода — 1,6 мм.
  • проводов в витке — 2
  • витков в пазу 23
  • параллельных ветвей в фазе — 2
  • сопряжение фаз — звезда

При испытании на холостом ходу при 380 В. потребляемый ток составил 27А., что превышает предельно допустимую норму, равную 12 А. В этом случае необходимо снизить напряжение, подаваемое на двигатель, до величины при которой потребляемый ток уменьшится до предельно допустимой нормы, в нашем случае до 12 А. Тем самым по кривой 2 из точки 2 мы перешли в точку 3 (рис.1). Напряжение при этом в нашем случае будет U2 = 330 В.

Теперь необходимо изменить обмоточные данные двигателя так, чтобы потребляемый ток 12А. был при напряжении 380 В. Для этого количество витков в пазу надо увеличить по формуле:

где: W2 — требуемое количество витков в пазу;

W1 – имеющееся количество витков в пазу:

U2 — напряжение при котором устанавливается требуемый ток холостого хода

В нашем случае W1 = 23, поэтому требуемое количество витков:

Округляем полученный результат до ближайшего целого числа и получаем требуемое количество витков в пазу W2 = 26.

Для того что бы такое количество витков уместилось в пазу, необходимо снизить сечение витка обратно пропорционально увеличению их количества в пазу. Расчёт произвести по формуле:

где: Sдоп – максимально допустимое сечение витка, (кв. мм.)

S1 – имеющееся сечение витка (кв. мм.)

В нашем случае виток состоит из 2-х проводов диаметром 1,6 мм., что составляет 4,02 кв. мм. Тогда допустимое сечение витка составит:

Подбираем стандартный провод, обеспечивающий требуемое сечение витка. Выбираем провод диаметром 1,5 мм. в 2 провода, тогда сечение витка S2 составит:

что не превышает допустимое сечение.

Таким образом мы получили электродвигатель с удовлетворительным током холостого хода за счёт увеличения числа витков в катушке и снижения сечения витка. Остальные обмоточные данные остаются без изменений.

Теперь разберёмся, какой двигатель мы получили:

1. Мощность двигателя снизилась пропорционально снижению сечения витка:

что составляет 12%;

2. Двигатель рассчитан на другое напряжение U = 380 х 26/23 = 430В, а включается на 380В, т. е. увеличение количество витков в конечном счете тоже самое, что и включение двигателя на пониженное напряжение, в нашем случае на 13%, что ведёт к снижению индукции на те же 13% во всех элементах магнитной цепи двигателя (это и позволило снизить ток холостого хода).

Как следствие у двигателя снижается пусковой и максимальный моменты, увеличивается время разгона, снижается частота вращения при номинальной нагрузке. Сказанное легко объясняется при рассмотрении механических характеристик на рис.2

где: nс – синхронная частота вращения;

n1 и n2 частота вращения при номинальной нагрузке двигателя с заводскими и с изменёнными обмоточными данными

М1п и М2п — пусковой момент двигателей с заводскими и с изменёнными обмоточными данными

М ном — момент на валу двигателя при номинальной нагрузке;

М1max и М2max — максимальный момент двигателей с заводскими и с изменёнными обмоточными данными

Пусковой и максимальный моменты в асинхронных электродвигателях уменьшаются в квадрате от подведённого напряжения. Для пересчитанного нами двигателя напряжение было уменьшено на 13% т. е. составляет 87% от номинального. Тогда пусковой и максимальный моменты составят

0,87 х 0,87 = 0,757 т.е. 75,7 % от номинального. Исходя из вышеизложенного, нельзя увлекаться снижением тока холостого хода путем увеличения витков в обмотке статора т. к. двигатель может просто не раскрутиться или работать неустойчиво потому, что с некоторой натяжкой можно утверждать, что реактивный ток в асинхронных двигателях выполняет ту же роль, что и маховые массы в двигателях внутреннего сгорания.

Ориентировочные значения токов холостого хода приведены в приложении 1.

Приведённый метод пересчета двигателя с целью снижения тока холостого хода дорого обходится для ремонтного цеха т. к. приходится два раза перематывать обмотку статора; сначала по заводским обмоточным данным, потом по пересчитанным.

В некоторых случаях можно избежать двойной перемотки. Рассмотрим несколько способов.

Способ 1. Уменьшаем количество параллельных ветвей в схеме обмотки статора в 2 раза и соединяем фазы в треугольник. Такие переключения эквивалентны увеличению количества витков в

что позволяет снизить индукцию на 15% и ток холостого хода на 30…60%.

При отсутствии параллельных ветвей в фазе в фирменном исполнении необходимо предусмотреть возможность такого переключения, пересчитав обмотку статора на 2 параллельные ветви. Для этого требуется:

Читать еще:  Быстрый запуск для карбюраторных двигателей

— увеличить количество витков в пазу в 2 раза;

— сечение витка уменьшить в 2 раза;

— соединить фазы в 2 параллельные ветви.

Способ 2. Переход с двухслойной обмотки статора на однослойную даёт снижение индукции на 3…4% (за счет более высокого обмоточного коэффициента) и за счёт меньших потерь от потоков рассеяния в лобовых частях позволяет в итоге снизить ток холостого хода на 10…20%, при этом мощность двигателя не меняется. В этом случае необходимо предусмотреть возможность сборки двигателя т. к. вылеты лобовых частей однослойной обмотки больше чем у двухслойной.

Способ 3. При перемотке двигателей с обмоткой пропитанной в эпоксидном компаунде и повергнувшихся выжигу изоляции для облегчения демонтажа обмотки преднамеренно увеличить количество витков в катушке на 8 … 12%. Это также может предотвратить повторную перемотку двигателя. Естественно необходимо заручиться согласием заказчика на снижение мощности. Если снижение мощности недопустимо, необходимо применить материалы с более высоким классом нагревостойкости, что позволит эксплуатировать двигатель при более высоких температурах при номинальной нагрузке.

Если все перечисленные меры по снижению тока холостого хода оказались недостаточными и снижение мощности двигателя недопустимо, необходимо перешихтовать сердечник статора с лакировкой листов.

Разработал Nil
Приложение 1

Токи холостого хода (в Амперах) даны при напряжении 380 В.

Определение тока и потерь холостого хода асинхронных двигателей

При проведении опыта короткого замыкания измеряют ток и потери короткого замыкания электродвигателей, проверяют состояние соединений обмоток, а также качество заливки короткозамкнутых роторов асинхронных двигателей. Результаты опыта позволяют определить начальный пусковой ток и начальный вращающий момент электродвигателя, которые являются важными эксплуатационными параметрами.
Опыт короткого замыкания производят при заторможенном роторе. В электродвигателях с фазными роторами обмотку ротора замыкают накоротко на кольцах. При заторможенном роторе к статору подводят практически симметричное напряжение номинальной частоты.
Вращающий момент для электродвигателей мощностью до 100 кВт измеряют динамометром, весами, тормозом или специальными приборами. Так как этот момент может несколько изменяться в зависимости от положения ротора по отношению к статору, то измерения производят несколько раз, сдвигая ротор на одно зубцовое деление, и в качестве результата принимают наименьший из замеренных моментов. Для двигателей мощностью выше 100 кВт вращающий момент обычно определяют расчетным путем по результатам измерения потерь короткого замыкания.
Необходимо учитывать, что при проведении опыта электродвигатель является трансформатором, вторичная обмотка которого (обмотка ротора) замкнута накоротко. Ток, проходящий по обмоткам, может в несколько раз превысить номинальный, а так как двигатель при неподвижном роторе не вентилируется, то его обмотка очень быстро нагревается. Поэтому необходимые отсчеты по приборам и сам опыт надо производить с максимально возможной быстротой. Следует обратить серьезное внимание на надежность устройств, служащих для затормаживания ротора, так как при проведении опыта они испытывают значительные усилия. Направление вращения ротора определяют заранее и, сообразуясь с ним, устанавливают затормаживающие устройства. При ошибке эти устройства могут сорваться и нанести повреждения персоналу.
Опыт короткого замыкания обычно производят сразу после опыта холостого хода. Характеристика короткого замыкания представляет собой зависимость линейного тока короткого замыкания /„ и потерь короткого замыкания Рк от приложенного к статору напряжения Ик.
Для проведения опыта собирается схема, аналогичная схеме при опыте холостого хода (рис. 1). При проведении опыта рекомендуется двигатель включать на напряжение, составляющее 15—20% номинального, затем быстро поднимать его до требуемого значения. При типовом испытании следует произвести пять — семь отсчетов при разных значениях подводимого напряжения. Первый отсчет берут при наибольшем напряжении. Отсчеты по приборам при каждом значении подведенного напряжения производят за время не более 10 с во избежание чрезмерного нагрева обмотки током короткого замыкания. После каждого отсчета двигатель отключают.
При типовом испытании двигателя мощностью до 100 кВт опыт проводят, начиная с напряжения, отличающегося от номинального не более чем на ±10%. Типовое испытание короткозамкнутых двигателей мощностью свыше 100 кВт допускается производить при напряжениях, меньших номинального, но при таких, чтобы максимальное значение тока короткого замыкания было не ниже 2,5—4-кратного номинальному. При испытании короткозамкнутых двигателей мощностью свыше 1000 кВт, а также при испытании двигателей с фазным ротором допускается доводить ток только до 2-кратного номинальному. Во всех случаях требуется один из отсчетов произвести при напряжении, указанном ниже.

Напряжение короткого замыкания, В .

ГОСТ 7217-66 рекомендует при приемо-сдаточных испытаниях ток и потери короткого замыкания определять только при одном напряжении согласно приведенным выше данным с последующим пропорциональным пересчетом тока короткого замыкания на номинальное напряжение двигателя. Потери в этом случае пересчитывают пропорционально квадрату тока. По данным замеров строится характеристика короткого замыкания (рис. 4).
Так же как и при опыте холостого хода, измерение подводимой мощности производится по схеме двух ваттметров. Однако корректировка подводимой мощности на потерю в приборах не производится, так как эти потери обычно лежат ниже уровня погрешности измерения.
Коэффициент мощности при опыте короткого замыкания составляет:
Контроль правильности определения производят по кривой, приведенной на рис. 1. Для определения вращающего момента Мк, Н-м*, при коротком замыкании

Рис. 4. Пример построения
характеристики короткого
замыкания.

двигателей мощностью выше 100 кВт следует пользоваться формулой
где Рцм2 — потери в обмотке ротора при опыте короткого замыкания, кВт; пс — частота вращения (синхронная), об /мин.

Потери в обмотке ротора Ркм2, кВт, составляют:

где Рhmi — потери в обмотке статора при опыте короткого замыкания, кВт, равные: Pkmi=3/V?/ 1000 — при соединении фаз в звезду; PKMi=IR/1000 — при соединении фаз в треугольник, где R — сопротивление при постоянном токе одной фазы, Ом; Рс — потери в стали,
Значения ki для некоторых двигателей приведены в табл. 1.
Для асинхронных двигателей большей мощности, а также специального исполнения значения kf указаны в соответствующих стандартах и технических условиях; здесь эти данные не приводятся.
Таблица 1

Величина потерь короткого замыкания (приведенная к номинальному напряжению) должна удовлетворять зависимости

где km — установленная в стандартах или технических условиях минимальная кратность начального пускового вращающего момента; Рном — номинальная мощность электродвигателя, кВт; Rp — расчетное сопротивление фазы обмотки статора, т. е. приведенное к температуре 75°С (если двигатель по нагревостойкости изоляции относится к классам А, Е, В) или 115°С (для классов F и Н), Ом; Рс — потери в стали электродвигателя при номинальном напряжении, кВт (определяются при опыте холостого хода); 0,85 — коэффициент, учитывающий допуск 15% в сторону снижения, установленный ГОСТ 183-74 на значение кратности начального пускового вращающего момента; k — коэффициент, равный
0,003 при соединении обмотки статора в звезду или 0,001 при соединении в треугольник.
Таблица 2

Таблица 3

Значения kM для двигателей серий А и АО определяют по табл. 2, для двигателей серий А2 и А02 — по табл. 3, для двигателей мощностью 110—1000 кВт kM равен 0,9 для двух- и четырехполюсных и 1,0 для шести-, восьми-, десяти- и двенадцатиполюсных. Для остальных двигателей значения kM указаны в соответствующих стандартах и технических условиях и здесь не приводятся.
Во время проведения опыта короткого замыкания на пониженном напряжении представляется удобная возможность проверить исправность обмотки короткозамкнутого ротора. Это особенно важно для роторов с литыми алюминиевыми обмотками, в которых часто встречаются пороки литья — пузыри, трещины, обрывы стержней, которые трудно обнаружить при наружном осмотре.
Проверка заключается в том, что при включении обмотки статора на трехфазное напряжение, пониженное настолько, что ротор еще не вращается, а ток настолько мал, что не вызывает заметного перегрева обмоток, ротор медленно проворачивают вручную и следят за показанием трех амперметров, включенных в фазы статора.
Если обмотка ротора исправна, его проворачивание не вызывает изменения показаний амперметров; при неисправном роторе стрелки амперметров поочередно колеблются, и тем заметнее, чем больше неисправность.

Читать еще:  Что такое однополярный двигатель

Как рассчитать ток холостого хода асинхронного двигателя

Подписка на рассылку

Электродвигатель переходит в режим холостого хода, когда с его вала снимают рабочую нагрузку. В этом случае можно определить такие важные параметры функционирования устройства, как намагничивающий ток, мощность и коэффициент потерь в элементах конструкции привода. Но главное – в режиме холостого хода можно определить исправность устройства.

Так, электродвигатель на холостом ходу греться не должен. Но в некоторых случаях температура привода повышается – и это сигнализирует о неполадках, которые впоследствии могут проявить себя.

Параметры холостого хода электродвигателя

Как было сказано выше, холостой ход – это режим работы асинхронного электродвигателя, при котором на валу нет нагрузки. В этом случае устройство с точки зрения электротехники схоже с трансформатором. Но главное – оно потребляет меньше электроэнергии, что особенно важно для контроля правильности работы мотора.

В частности, ток холостого хода асинхронного электродвигателя в зависимости от мощности и частоты вращения составляет в среднем 20-90% от номинального. Существует таблица, в которой указаны данные значения.

Так, например, ток холостого хода электродвигателя на 5 кВт при частоте вращения в 1000 оборотов в минуту составляет 70% от номинального (см. рис. 2). При частоте вращения 3000 оборотов в минуту – всего 45% от номинального (см. рис. 3). Это важно учесть, так как если фактическая сила тока значительно расходится с расчётной, то это сигнализирует о неполадках.

Стоит отметить, что параметры работы двигателя обычно указаны в прилагаемой к нему документации или могут быть получены посредством расчётов.

Что делать, если греется электродвигатель на холостом ходу
Электродвигатель на холостом ходу греться не должен. Допускается лишь незначительное увеличение температуры, обусловленное естественными причинами – появление трения в подшипниках на валу ротора и сопротивление в обмотке. А вот заметный нагрев сигнализирует в первую очередь о неполадках в устройстве.

Чаще всего нагревается асинхронный электродвигатель на холостом ходу из-за межвиткового замыкания в обмотках. Это требует срочного ремонта. Ведь при повышении нагрузок межвитковое замыкание может привести к перегреву и выгоранию обмотки – и, как следствие, повреждению как самого ЭД, так и конструкции, в которую он установлен.

Ещё одна возможная причина нагрева ЭД в этом режиме – эксплуатация в нештатных условиях. Например, превышение напряжения. В этом случае необходимо срочно отключить питание двигателя, так как из-за перегрева может возникнуть межвитковое замыкание в обмотках или замыкание обмотки на корпус двигателя.

Реже нагрев ЭД наблюдается из-за затруднённого движения ротора. Стоит убедиться, что подшипники работают нормально, а между обмотками ротора и статора не попали загрязнения.

Ток – холостой ход – асинхронный двигатель

Ток холостого хода асинхронных двигателей достигает 20 – 40 % от номинального тока статора ( / 0 0 2 – 0 4 / IH), между тем как у трансформаторов ток / 0 составляет всего 2 5 – 10 % от / IH. Повышенное значение тока холостого хода асинхронной машины обуслоь-лено наличием воздушного зазора между статором и ротором. [1]

Ток холостого хода асинхронных двигателей достигает 20 – 40 % от номинального тока статора ( / 0 2 – 0 4 / IH), между тем как у трансформаторов ток / 0 составляет всего 2 5 – 10 % от / IH. Повышенное значение тока холостого хода асинхронной машины обусловлено наличием воздушного зазора между статором и ротором. [2]

Почему ток холостого хода асинхронного двигателя составляет 25 – 50 %, а у трансформатора 3 – 10 % от номинального тока. [3]

Почему ток холостого хода асинхронного двигателя составляет 25 – 50 %, а трансформатора – 3 – 10 % от номинального тока. [4]

Для определения активной составляющей тока холостого хода асинхронного двигателя необходимо предварительно вычислить: вес активной стали статора и магнитные потери в нем-для трехфазного асинхронного двигателя; вес стали статора и ротора и потери в них – для однофазного двигателя с беличьей клеткой и малоинерционного асинхронного двигателя с немагнитным полым ротором. [5]

Для определения активной составляющей тока холостого хода асинхронного двигателя необходимо предварительно вычислить: массу активной стали статора и магнитные потери в нем – для трехфазного асинхронного двигателя; массу стали статора и ротора и потери в них – для однофазного двигателя с беличьей клеткой и малоинерционного асинхронного двигателя с немагнитным полым ротором. [6]

Из-за большого магнитного сопротивления цепи с двумя воздушными зазорами ток холостого хода асинхронного двигателя значителен и является в основном реактивным током. [7]

Сопротивления Rm и Хт намагничивающего контура значительно меньше соответствующих значений для схемы замещения трансформатора, так как ток холостого хода асинхронного двигателя гораздо больше, чем у трансформатора. Если при рассмотрении работы трансформатора часто можно пренебречь намагничивающим контуром, то при рассмотрении работы асинхронного двигателя этого сделать нельзя, так как ошибка может получиться значительной. [8]

При повышении частоты и номинальном напряжении ток холостого хода и магнитный поток уменьшаются, а следовательно, снижается и вращающий момент. На рисунке 249 приведен график зависимости тока холостого хода асинхронного двигателя от частоты, который показывает, что уменьшение частоты влечет за собой резкое увеличение тока холостого хода. [10]

Читать еще:  Что такое конвекторный двигатель

Ток холостого хода двигателя и потребляемая им реактивная мощность значительно возрастают в случае работы от сети с напряжением выше номинального. Поэтому во время эксплуатации необходимо следить за напряжением цеховых сетей и не допускать отклонения его от номинального. Величина тока холостого хода асинхронного двигателя возрастает также вследствие низкого качества ремонтных работ: неправильное соединение секций обмоток, изменение при перемотке обмоточных данных по сравнению с паспортными и увеличение величины воздушного зазора. [11]

Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. А конкретно именно работать электромонтёром.

Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей, и когда писал какие бывают номиналы электродвигателей.

Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.

Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн),

Где Pн – это мощность электродвигателя; измеряется в кВт

Uн – это напряжение, при котором работает электродвигатель; В

ηн – это коэффициент полезного действия, обычно это значение 0.9

ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.

Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.

Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.

Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А

Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732

Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.

Как определить ток электродвигателя на практике.

Ещё в заключении, хотел поделиться с вами, тем как я определяю приблизительное значение тока без всяких расчётов. Если реально посмотреть, что у нас с вами получилось при расчёте, то реально вид, что номинальный ток приблизительно в два раза больше чем его мощность. Вот так я определяю ток на практике, мощность умножаю на два. Но это только приблизительное значение.

А ток холостого хода будет обычно в два раза меньше, чем его мощность. Но про то, как определить эти значения, мы поговорим с вами в следующих статьях. Так что подписывайтесь на обновления и не забываете поделиться этой статьёй со своими друзьями в социальных сетях.

Онлайн расчет характеристик трехфазных электродвигателей

1. Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2. Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

3. Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

4. Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector