Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Оборудование машинного отделения судна

Оборудование машинного отделения судна.

Машинным отделением считается пространство от верхней кромки киля до предельной линии погружения, ограниченное при этом крайними основными поперечными переборками и включающее пространства, предназначенные для главных и вспомогательных механизмов, котлов, если они имеются, и постоянные угольные ямы. «

Машинное отделение — помещение или помещения на судне, предназначенные для размещения машин и механизмов, обеспечивающие его движение.

Машинное отделение (МО), как правило, располагается в кормовой части судна, а на пассажирских, грузопассажирских и буксирных судах – ближе к их средней части.

Оборудования машинного отделения:

1) Главные двигатели — двигатели, предназначенные для приведения в действие движителей и/или оборудования, обеспечивающего основное назначение судна.

2) Вспомогательные двигатели — первичные двигатели судовых генераторов тока, двигатели привода грузовых, пожарных насосов и т. д.

3) Насосы — используются на судах для выкачивания вязких жидкостей с хорошими смазочными свойствами, таких как масло, топливо и т. д.

4) Котлы. На теплоходах устанавливаются водотрубные и огнетрубные вспомогательные паровые котлы, а также утилизационные и водогрейные котлы.

5) Судовые компрессоры — применяются как для хозяйственных нужд, так и для запуска дизелей.

6) Машинное отделение — помещение или группа помещений, в котором(ых) размещены элементы энергетической установки (главные и вспомогательные), ремонтные площадки и мастерски

Характерным примером одновальной установки с малооборотным дизелем и кормовым расположением машинного отделения является энергетических установок танкера «Победа» дедвейтом 68 000 т (рис. 2.7). Объем автоматизации энергетических установок судна соответствует классу автоматиза­ции А1 Регистра СССР. В качестве главного двигателя установлен дизель оте­чественной постройки 7ДКРН 80/160-4 (Nе = 12 360 кВт, n = 122 об/мин). Судовая электростанция включает три дизель-генератор маркиДГР 500/500 (Nе = 500 кВт), один утилизационный турбогене­ратор ТГУ-800 (Nе — 800 кВт) и один аварийный дизель-генератор марки ДГФА 100/1500Р (Nе = 100 кВт).

В составе энергетических установок предусмотрена специальная вакуумная конден­сационная установка ВКУ 250/0,35. Для обеспечения энергетических установок сжатым воздухом в машинном отделении установлены два автоматизированных электро­компрессора марки ЗЗК-420/32 (производительность Q = 420 м 3 /ч) и один марки ЗК-140/32 (производительность Q = 140 м 3 /ч), по­дающий воздух под давлением 3 МПа. Для очистки тяжелого топ­лива установлено два самоочищающихся сепаратора марки MARX 309, а для сепарации масла и дизельного топлива три сепаратора MARX 207. Системы охлаждения главного двигателя и вспомогательным дизелем выпол­нены раздельно с самостоятельными насосами (по два на каждую систему, один из насосов — резервный).

В машинное отделение размещены паротурбинные приводы грузовых и зачистных насосов и электроприводы балластных насосов. В машинном отделении рас­положены также подъемно-транспортное оборудование, механиче­ская мастерская, ремонтный инструмент и запасные части.

Машинное отделение судов смешанного плавания характеризуются большой на­сыщенностью оборудованием из-за ограничений высоты борта, осадки и ширины корпуса. Дополнительные трудности при разме­щении механизмов в машинное отделение создаются в связи с принятым для боль­шинства судов кормовым расположением машинное отделение, где обводы корпуса значительно сужены. Удельная площадь, занимаемая механиз­мами энергетических установок, составляет в среднем 0,13 м 2 /кВт, а удельная масса энергетических установок равна 80—140 кг/кВт. На судах смешанного плавания приме­няются в основном двухвальные энергетических установок с винт фиксированного шага. Как правило, среднеоборотный дизель применяют в диапазоне агрегатных мощностей от 600 до 1900 кВт [отечественные дизели типов ДР 30/50, ЧРН 36/45, ЧРН 18/22, а также дизели SKL марок NVD36U, NVD48U, 8NVD48A-2U (ГДР), 6L275 и 6L275/III (ЧССР)].

Расположение механизмов и оборудования в машинном отделении: 1 — главный двигатель; 2 — валогенератор; 3 — редуктор; 4 — вспомогательный дизель генератор № 1; 5 — вспомогательный дизель генератор № 2; 6 — компрессор для производственных нужд; 7 — топливный сепаратор; 8 — масляный сепаратор; 9 — компрессор; 10 — сжатый воздух.

Моторист-рулевой

РЕЖИМ РАБОТЫ ГЛАВНЫХ И ВСПОМОГАТЕЛЬНЫХ ДВИГАТЕЛЕЙ

Мощность и частота вращения вала главного двигателя зависят от скорости хода судна и направления его движения. Требования судовождения вызывают необходимость частой перекладки руля, условия судового хода постоянно меняются, а следовательно, изменяется и сопротивление корпусу судна. Ветровые, волновые и другие погодные факторы также влияют па сопротивление движению судна. Все это приводит к необходимости изменения частоты вращения вала двигателя, т. е. к изменению режима его работы. Различают такие режимы работы главных двигателей, как пуск, прогрев, режим холостого хода для нереверсивных двигателей, реверсирование, работа под нагрузкой, установившийся режим, режим работы на номинальной мощности, перегрузочный режим, переход с одной установившейся частоты вращения на другую, режим минимально устойчивой работы, аварийный режим, остановочный режим.

Изменение основных показателей работы дизеля (мощности, частоты вращения, расхода топлива, температуры отработавших газов и т. д.) в зависимости от режима работы называется характеристикой двигателя. Характеристики определяются опытным путем.

Главные двигатели, связанные с гребными винтами непосредственно, а также через редукторную или реверс-редукторную передачу, работают по так называемой винтовой характеристике.

Винтовой характеристикой называется зависимость между мощностью и частотой вращения вала двигателя, приводящего во вращение гребной винт. Такая зависимость строится в виде графиков (рис. 130), на которые также наносятся кривые изменения максимального давления цикла ρz , кг/см2, температуры отработавших газов tо.г ,С, расхода топлива на двигатель G, кг/ч, удельного расхода топлива ge, кг/э.л.с.*ч и другие параметры.

Внешняя характеристика (см. рис. 130) получена при неизменной (номинальной) цикловой подаче топлива плунжерами насосов. Такая характеристика снимается на заводском стенде при фиксированных дозирующих органах насосов. Любая точка, лежащая на кривых внешней характеристики (на рисунке они помечены индексами «вн»), соответствует предельно допустимой нагрузке, которую может развивать двигатель при указанной частоте вращения. Точки пересечения внешней и винтовой характеристик соответствуют режиму номинальной мощности двигателя. Работа двигателя с параметрами, лежащими выше внешней (ограничительной) характеристики, считается перегрузочным режимом и допускается в исключительных случаях, продолжительностью не более 1—2 ч (в зависимости от указаний инструкции по эксплуатации).

Левая граница кривых на рис. 130 соответствует режиму минимально устойчивой частоты вращения, правая — максимальной мощности (110% от Ne.ном ), т. е. перегрузочному режиму. Двигатель 6 ЧСП 18/22 имеет реверс-редукторную передачу, на работу которой затрачивается определенная мощность, что повышает как общий, так и удельный расход топлива на двигатель. Кривые, соответствующие эффективной мощности, отбираемой с выходного фланца реверс-редуктора, и приведенный к этой мощности удельный расход топлива показаны на графике штриховыми линиями.

Читать еще:  Электрический наддув двигателя своими руками

Установившимся считается режим работы главных двигателей при неизменной частоте вращения, постоянной температуре отработавших газов, охлаждающей воды и масла. Такой режим наступает при движении судна на прямолинейном глубоководном участке в тихую погоду. Для каждого такого установившегося режима и определяют величины всех основных параметров работы двигателя (которые и наносят на график винтовой характеристики) при паспортных испытаниях судна. Испытания проводятся при паспортной загрузке судна. Гребные винты должны быть «согласованы» с двигателями, т. е. обеспечивать номинальную мощность двигателя при номинальной частоте вращения.

Основные показатели работы двигателя, полученные при паспортных испытаниях, не всегда удается сохранить в эксплуатационных условиях. Даже нормальная, но длительная работа дизелей обусловливает износы основных деталей и, как следствие, изменение температур, давлений и других показателей работы двигателя.

Мелководье и различные плавающие предметы часто приводят к повреждениям винтов. От длительной эксплуатации корпус судна деформируется, увеличивая сопротивление воды. Это также приводит к отклонению рабочих параметров от паспортных значений.

Особенно вредно на сроке службы и надежности дизеля отражается работа на перегрузочном режиме. Перегрузка двигателя может наступить при внезапном выходе судна на мелководье и других резких изменениях сопротивления воды корпусу судна. У многовальных судовых установок перегрузка двигателей может быть вызвана остановкой хотя бы одного дизеля без снижения частоты вращения других двигателей. Кратковременные (но частые) перегрузки правого или левого двигателя наступают и при выполнении поворотов судна на номинальной частоте вращения главных двигателей. В этих случаях один из гребных винтов недогружен, а другой перегружается за счет большего отбоя воды в его сторону, и двигатель выходит на перегрузочный режим. В целях сохранности двигателей следует во всех указанных случаях снижать частоту вращения вала двигателя, не допуская даже кратковременной работы дизеля на перегрузочных режимах (если это не вызывается чрезвычайными условиями судовождения).

Нормальные режимы двигателей предусматривают их работу с согласованными винтами, позволяющими развивать полную (номинальную) мощность при паспортной (номинальной) частоте вращения. Но если по каким-то причинам (например, при ударе) шаг гребного винта (или хотя бы одной из его лопастей) оказался увеличенным, т. е. при той же частоте вращения винт стал отбрасывать большее количество воды,— согласование винта с двигателем нарушается. Винт становится «тяжелым», а это равнозначно работе дизеля в перегрузочном режиме, что недопустимо. В таком случае необходимо установить двигателю пониженную частоту вращения nт (рис.131), ограничивающую мощность по внешней характеристике.

Следовательно, при «тяжелом» винте двигатель может сохранить свои основные рабочие параметры при меньшей частоте вращения nт и меньшей мощности Nт, ограниченной внешней характеристикой. Это положение распространяется на все виды перегрузочных режимов. Винт становится как бы «тяжелым» и

при работе двигателя на швартовах. В последнем случае разрешается развивать частоту вращения не более 80—90% от номинальных значений.

Рис. 130. Совмещенные характеристики двигателя 6ЧСП18/22

При работе буксировщика-толкача или грузового судна порожнем также появляется несогласованность гребного винта и двигателя. Винт становится «легким», а чтобы двигатель развил номинальную мощность, нужно значительно увеличить частоту вращения. Но из условий сохранения прочности деталей двигателя частоту вращения можно повысить только на 3%, до величины nл. Следовательно, при «легком» винте двигатель также не будет развивать полной мощности, но уже из-за ограничения по частоте вращения.

Таким образом, как в случае «тяжелого», так и в случае «легкого» винта мощность двигателя будет меньше (Nт и Nл), чем номинальная мощность Ne.ном . В практике эксплуатации наиболее удобными для постоянного косвенного контроля мощности, развиваемой двигателем, являются температура отработавших газов и частота вращения вала. Их превышение против установленных значений недопустимо.

Режим холостого хода главных двигателей, оборудованных реверс-редукторами, характерен низкими температурами детали, плохим распыливанием малых порций топлива и большой неравномерностью цикловых подач топлива (даже пропуском вспышек) по цилиндрам, что способствует повышенному нагарообразованию. Поэтому продолжительная работа дизелей (свыше 15-30 мин) на таком режиме не рекомендуется. Она может быть оправданной лишь при кратковременных стоянках судна, так как частые пуски двигателя ведут к повышенным износам.

Рис. 131. Внешняя и винтовые характеристики эффективной мощности двигателя

Аварийный режим, т. е. работа двигателя при наличии каких-то серьезных неисправностей, допускается только в исключительных случаях (оказание помощи судну, терпящему бедствие, спасение людей, спасение груза и собственно судна и т. п.). При этом необходимы постоянное наблюдение за двигателем и другие меры, позволяющие поддерживать работоспособность главных двигателей.

Вспомогательные двигатели работают при постоянной частоте вращения, поддерживаемой регуляторами. Меняется у них только нагрузка, что вызвано изменением потребляемой электроэнергии при включении и выключении потребителей тока. В связи с этим графическая зависимость между мощностью дизеля и основными его рабочими параметрами при неизменной частоте вращения носит название нагрузочной характеристики.

Регулирование мощности дизеля, работающего по нагрузочной характеристике, достигается изменением количества топлива, подаваемого за цикл. При уменьшении нагрузок удельный расход такого двигателя возрастает интенсивнее, чем у двигателя, работающего по винтовой характеристике.

Как показывает опыт эксплуатации вспомогательных двигателей, их режимы работы редко превышают 50% мощности. Обычно потребность в электроэнергии на судне такова, что они развивают мощность около 20—25% номинальной. Это обусловливает их более длительный срок службы по сравнению с паспортными данными.

Типы СЭУ с ДВС.

Судовые энергетические установки с ДВС классифицируются по целому ряду признаков.

По числу гребных валов: одновальные; двухвальные; трехвальные и т.д.

По способу передачи мощности от дизеля к гребным винтам:

— с жесткой передачей без изменения частоты вращения (гребной винт вращается с частотой вращения коленчатого вала главного двигателя);

— с гибкой передачей (с помощью гидромуфт, электромагнитных муфт; гидротрансформаторов);

— с электрической передачей – дизели работают на генераторы, а гребные винты приводятся в действие от гребных электродвигателей (ГЭД);

— с гидропередачей, обеспечивающей гидрореактивную движущую силу (на судах с водометными движителя).

По числу двигателей, работающих на каждый гребной вал: одномашинные – на каждый гребной вал работает один главный дизель; многомашинные – на каждый гребной вал работают два и более главных двигателей, передающих свою энергию вращения на гребной вал через один общий редуктор.

Читать еще:  M20 что за двигатель

По типу применяемых двигателей:

— однотипные, когда используются однородные типы двигателей;

— комбинированные – используются несколько типов главных двигателей (например, дизели и газовые турбины и т.п.).

По типу движетеля: с гребным винтом фиксированного шага (ВФШ); с гребным винтом регулируемого шага (ВРШ); с противоположно вращающимися соосными гребными винтами; с водометными движителями; с крыльчатыми движителями.

Современные мощные главные двигатели выполняются с наддувом и струйным распылением топлива. Четырехтактные дизели выполняются тронковыми, двухтактные – тронковыми и крейцкопфными, а также с противоположно движущимися поршнями и несколькими коленчатыми валами.

Главные судовые дизели классифицируются по ряду признаков.

1. По назначению:

— всережимные, обеспечивающие все скорости судна от самой малой до полной;

— ускорительные (форсажные), обеспечивающие полные и близкие к полным хода при кратковременном использовании;

— маршевые (экономического хода), обеспечивающие длительный экономический ход.

2. По конструктивному исполнению:

— рядные с вертикальным расположением цилиндров четырехтактные с числом цилиндров от 6 до 12 и двухтактные с числом цилиндров от 5 до 12;

— V-образные с числом цилиндров от 8 до 20;

— X-образные с числом цилиндров от 16 до 32;

— звездообразные с числом цилиндров от 42 до 56;

— двухрядные – по существу два дизеля, соединенных общим картером, рамой и зубчатой передачей;

— D-образные двухтактные с противоположно движущимися поршнями с числом цилиндров от 9 до 18.

3. По реверсивности: нереверсивные с реверсивными муфтами или с реверс-редукторами; реверсивные.

4. По массовым и габаритным характеристикам, скоростному режиму и ресурсу:

— быстроходные средней удельной массы;

Рассмотрим более детально указанные типы дизелей и сравним их.

Малооборотные тяжелые дизели являются в основном двухтактными с клапанной или петлевой продувкой. Они отличаются высокой удельной массой (до 55 кг/кВт), большими габаритами и низкой частотой вращения коленчатого вала. Такие дизели применяют для прямой передачи мощности на гребные винты крупнотоннажных морских судов (танкеров, сухогрузов, рудовозов и др.). Ведущие западные фирмы создали ряд дизелей этого класса с числом цилиндров от 6 до 12, мощностью 30-35 тыс. кВт. Например, дизели фирмы МАН-Бурмейстер и Вайн. К таковым относится дизель 60МС. Это двухтактный крейцкопфный реверсивный с прямоточно-клапанной продувкой и турбинным наддувом.

Среднеоборотные дизели получили широкое распространение в качестве главных дизелей СЭУ. Это четырехтактные двигатели с высоким давлением наддува, числом цилиндров от 6 до 20 при рядном или V-образном расположений цилиндров, частотой вращения коленчатого вала 350…550 об/мин. Такая частота вращения коленчатого вала, как правило, не позволяет устанавливать прямую передачу на гребной винт. Поэтому применяются редукторные передачи, соединяемые с дизелем упругими муфтами. Ресурсы дизелей и передач отвечают высоким требованиям морского флота. Причем суммарная масса дизель-редукторного агрегата в 2,0…2,5 раза меньше малооборотных тяжелых дизелей.

На различных судах в качестве главных двигателей широко применяются среднеоборотные дизели фирм: «МАН-Бурмейстер и Вайн», «Зульцер», «Пилстик», «МаК» и др. Они, как и малооборотные дизели эксплуатируются на тяжелых сортах топлива. Примером могут служить среднеоборотные дизели

Высокооборотные (быстроходные) дизели средней удельной массы. Это дизели рядной и V-образной конструкции мощностью 740…4500 кВт при частоте вращения 750…1500 об/мин. Такие дизели применяются на судах ограниченного водоизмещения (буксирах, небольших танкерах, морских траулерах, речных судах) и в качестве главных дизель-генераторов на судах с электродвижением.

Быстроходные легкие судовые дизели сложной конструкции V-, X-, H-образные или звездообразные. Их изготавливают при широком использовании алюминиевых сплавов для получения минимальной массы. Они применяются на наиболее быстроходных судах, требующих развития высокой скорости в легких энергетических установках. Например, на судах с подводными крыльями мощность серийных дизелей этого типа достигает 3700 кВт. Они отличаются малыми размерами диаметра и большим числом цилиндров (12…56). Этот тип двигателей обладает наименьшим ресурсом и в этом их основной недостаток.

5.3.1 Дизельные установки с малооборотными двигателями.

Компоновка, масса, габариты и стоимость установки зависит в основном от характеристик главного двигателя, а малооборотные дизели имеют большие размеры и массу. Поэтому они размещаются в средней части машинного отделения. Чаще всего такие дизели применяются в одновальных установках с размещением в диаметральной плоскости судна параллельно основной плоскости или с незначительным отклонением от линии гребного вала.

Реже встречаются двухвальные установки, а в практике судостроения известен случай строительства трехвального контейнеровоза (Япония) с малооборотными дизелями фирмы «Мицубиси». На этом судне установлено два дизеля эффективной мощностью 18,5 мВт по бортам и один дизель эффективной мощностью 26 мВт – по диаметральной плоскости.

Следует иметь в виду, что многовальная установка во многом уступает одновальной по массе, габаритам, сложности, капитальным затратам, затратам на обслуживание и др. Во многих случаях многовальную установку с малооборотными дизелями не всегда можно считать оправданной, тем более, что в настоящее время максимальная мощность таких дизелей составляет 70 мВт при высокой экономичности. Например, дизели фирмы «Зульцер» типа RTA в 12-ти цилиндровом исполнении.

Таким образом, наиболее эффективны одновальные установки с малооборотными дизелями.

5.3.2 Дизель-редукторные установки со среднеоборотными и высокооборотными двигателями.

Такие установки занимают второе место по распространенности и применяются на морских судах транспортного, технического, вспомогательного и промыслового флота, а также на судах смешанного плавания (река-море) и на речных судах.

Число оборотов коленчатого вала среднеоборотных дизелей (250…750 об/мин) превышает допустимые обороты гребного винта и поэтому в состав такой дизельной установки включаются передачи мощности (механические, гидравлические или комбинированные).

Совокупность установленных на общей фундаментной раме главных двигателей и передач, соединительно-разъединительных или пружинных муфт называется дизель-редукторным агрегатом.

К передачам, как правило, присоединяются один или два валогенератора, что усложняет схему установки, но дает выигрыш в экономии топлива для выработки электроэнергии при работе главного двигателя. Такое решение также позволяет уменьшить количество дизель-генераторов судовой электростанции и экономить ресурс.

Редукторы и соединительно-разъединительные муфты увеличивают массу (на 25…60%) и габариты (на 30…50%) дизель-редукторной установки. Однако, в целом, они в 1,2…2 раза меньше, нежели установки с малооборотными дизелями. Габариты дизель-редукторного агрегата практически не отличаются от габаритов установки с малооборотным дизелем. Однако, последний в два раза выше.

Незначительная высота среднеоборотных дизелей позволяет использовать их на судах, которые перевозят длинномерные грузы и на которых необходимы палубные проезды для колесной техники (например, суда с горизонтальной грузообработкой).

Читать еще:  Что такое сапун двигателя камаз

Конструктивно главные установки со среднеоборотными дизелями и механическими передачами бывают одно-, двух-, трех- и четырехмашинными, которые присоединяются к одному редуктору. Такие СЭУ бывают одно- и многовальными.

По сравнению с установками с малооборотными двигателями, рассматриваемые установки имеют ряд преимуществ:

— машинное отделение судна со среднеоборотными дизелями может иметь меньшую высоту, а сама ГЭУ – меньше массу и габариты;

— наличие редуктора позволяет использовать двигатели и гребной вал при частичных оборотах, что отвечает наибольшему КПД винта;

— эксплуатационные характеристики установки выше за счет того, что при снижении скорости хода судна отдельные двигатели можно остановить, а оставшиеся в работе используются более эффективно;

— неисправность одного из двигателей не приводит к остановке судна, а возможность отключения неисправного двигателя позволяет выполнить его ремонт во время рейса.

Следует отметить и недостатки установок со среднеоборотными двигателями по сравнению с установками с малооборотными:

— ресурс среднеоборотного дизеля значительно ниже;

— из-за затрат энергии в редукторе и муфтах механический КПД меньше;

— более сложна эксплуатация из-за большого количества цилиндров дизелей;

— эти установки имеют повышенный уровень шума, что заставляет принимать дополнительные меры по шумоизоляции, а это ведет к удорожанию установки.

Установки с высокооборотными дизелями применяются на рыболовецких сейнерах речного флота, портовых буксирах, судах обеспечения, катерах, судах на подводных крыльях и на воздушной подушке. К этому классу относятся двигатели с частотой вращения коленчатого вала выше 750 об/мин. Поэтому в состав энергетической установки применяется понижающая передача на движители. Как правило, применяется механические, гидравлические, гидромеханические и электрические передачи.

Высокооборотные дизели имеют меньше массогабаритные показатели, чем среднеоборотные, меньшую стоимость и высокую ремонтопригодность. Однако они уступают среднеоборотным экономичностью, ресурсом и требуют использования легкого (дизельного) топлива.

Высокооборотные дизели широко применяются в установках с электропередачей. Это позволяет создавать компактные энергетические установки, так как дизель-генераторы можно размещать в любом месте судна, включая платформы и верхнюю палубу. При наличии условий передачи мощности на гребной винт в таких установках можно обойтись без валопровода.

СЭУ со среднеоборотными и высокооборотными дизелями отличаются между собой разнообразием конструктивных и компоновочных решений, которое определяется в большей степени типом и назначением судов. У них чаще, чем в установках с малооборотными дизелями, применяются навешанные вспомогательные механизмы (электрогенераторы, компрессоры воздушные, насосы топливные, масляные, охлаждения, осушительные, противопожарные), а это упрощает компоновку систем и уменьшает нагрузку на судовую электростанцию. В то же время навешанные механизмы (в большом количестве) могут снизить надежность и ремонтопригодность установки.

Управление судовыми главными двигателями

Для пуска, контроля работы и остановки главного двигателя служит специальный пост управления, расположенный сбоку на двигателе или на его торцевой стенке.

У паротурбинной установки пост управления находится около корпуса турбины высокого давления рядом с трубопроводом пара, ведущим к турбинам переднего и заднего хода.

Рис. 11. 33. Машинный телеграф:

1 – рукоятка; 2 – коммутирующий указатель; 3 – подтверждение: «машина–мостик»; 4 – сообщение: «мостик–машина»; 5 – приёмник; 6 – указатель команд; 7 – коммутирующий рычаг; 8 – датчик

К посту управления относятся машинный телеграф, системы пуска и обеспечения работы двигателя и турбины (рукоятка управления системой сжатого воздуха, клапаны управления подводом пара и так далее), а также ряд контрольно–измерительных приборов (манометры, термометры, указатели частоты вращения и другие), с помощью которых оператор может контролировать работу энергетической установки.

Рис. 11.34. Посты управления судном: а – центральный пост управления; b – пост управления механизмами

Машинный телеграф (см. рис. 11.33) служит для передачи команд о ходе с мостика в М. Выбранная на ходовом мостике определенная скорость появляется в виде команды на телеграфе в МО. Одновременно звучит сильный звонок, перекрывающий шум МО. Выполнение команды отражается на пульте ходового мостика, при этом происходит согласование выбранной и действительной скорости, и звуковой сигнал в МО умолкает.

С развитием судостроения и усовершенствованием судовых двигателей пост управления судном постоянно оснащался всё большим количеством контрольно–измерительных приборов. С целью улучшить условия работы в МО и защитить работающих там людей от высоких температур и вредного воздействия шума в МО стали устанавливать отдельные звуконепроницаемые посты управления с соответствующими установками кондиционирования воздуха. На рис.11.34показаны такие посты управления.

Стремление к сокращению численности команды судна и к применению механизмов и установок с оптимальными параметрами способствовало прогрессу автоматизации.

Автоматизация охватила сначала непосредственное управление отдельными агрегатами главного двигателя (например, автоматическое регулирование температуры охлаждающей воды и смазочного масла, вязкости топлива, температуры отработавших газов и так далее). Затем она распространилась и на всю судовую энергетическую установку (трюмные системы, системы балластной воды и так далее). В конечном счёте всё это привело к уменьшению численности экипажа судна и к автоматизированной энергетической установке.

Управление главным двигателем было переведено на мостик. На рис. 11.35 изображён ходовой мостик современного судна с пультом дистанционного управления.

Следующим шагом в автоматизации машинных процессов явилось применение электронных вычислительных машин, которые автоматически обрабатывают команды, полученные при измерении параметров мощности энергетических установок, и выбирают наиболее рациональные условия работы. Так, например, вычислительная машина контролирует мощность двигателя и цилиндров, крутящий момент и частоту вращения в зависимости от внешних условий (ветер, волнение, нагрузка и так далее).

Рис. 11.35. Пульт управления на мостике

На рис. 11.36 дана схема автоматизированной энергетической установки.

Из схемы видно, что команды можно передавать с мостика и параллельно с поста управления судном. В последнее время наряду с энергетической установкой ЭВМ используют и для управления другими рабочими процессами на судне. Управляют такими операциями как погрузка и разгрузка жидких грузов на танкерах, определение остойчивости судна, выбор оптимального маршрута, определение местоположения судна в море, предупреждение столкновений и автоматическое уклонение судна от столкновений с другими судами или неподвижными препятствиями.

Рис. 11.36. Автоматизированная энергетическая установка:

а – пульт управления;b– память; с – главный двигатель; d – пост управления механизмами

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector