Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Роторные (ротационные) насосы: разновидности, конструкция, принцип работы

Роторные (ротационные) насосы: разновидности, конструкция, принцип работы

Насос роторный – это устройство, которое используется в тех случаях, когда необходимо обеспечить перекачивание различных жидких сред в больших объемах. Различные типы роторных насосов, предлагаемых на современном рынке, отличаются между собой как конструктивным исполнением и техническими характеристиками, так и принципом действия. Разнообразием видов такого насосного оборудования определяется его эффективное использование в различных сферах.

Роторные насосы высокого давления используются в системах охлаждения, обратного осмоса и циркуляции воды или других жидкостей

Принцип работы и виды

Принцип, по которому работают роторные насосы, заключается в следующем. Перекачиваемая жидкость сначала поступает во внутреннюю камеру устройства, из которой она выталкивается вращательными и поступательными движениями, совершаемыми рабочим органом – ротором. Части ротора наряду с внутренними стенками рабочей камеры формируют замкнутое пространство, в которое и попадает жидкость. При уменьшении объема такого пространства, что происходит при движении ротора, жидкость по законам физики выталкивается.

Принцип действия роторного насоса

В зависимости от конструктивного исполнения рабочего органа роторные (или ротационные) насосы могут относиться к разным категориям. Кроме того, на различные виды роторные насосы делятся и по типу движения, совершаемого их рабочим органом. По этому признаку выделяют устройства роторно-вращательные и роторно-поступательные. Рабочий орган роторных насосов первого типа, как понятно из их названия, совершает только вращательные движения, а в установках второго типа это движение комбинированное – как вращательное, так и поступательное.

Роторно-вращательные насосы в зависимости от конструктивного исполнения рабочего органа и принципа действия подразделяются на шестеренчатые (зубчатые) и винтовые. В первых рабочая камера формируется внутренними стенками корпуса и зубчатыми колесами, которые делают как с внутренним, так с внешним зацеплением. Изменение рабочей камеры при этом происходит за счет вращения шестерен. Элементами, из которых формируется рабочая камера роторных насосов винтового типа, являются внутренние стенки корпуса и один или несколько винтов. Вращающийся вокруг своей оси винт формирует внутри насоса временные рабочие камеры, которые вместе с транспортируемой жидкостью двигаются вдоль оси винта к нагнетательному патрубку.

Схема роторного пластинчатого насоса

Роторные насосы поступательного типа делятся на шиберные, или пластинчатые, и плунжерные. В устройствах шиберного типа рабочим органом является вращающийся ротор, в продольные прорези на корпусе которого вставляются специальные пластины, называемые шиберами. Ось ротора в таких насосах не тождественна оси цилиндрического корпуса, в котором он совершает вращательное движение. Рабочая камера пластинчатых насосов формируется двумя расположенными рядом шиберами, самим ротором и внутренними стенками корпуса. Чтобы обеспечить герметичность рабочей камеры, создаваемой таким образом, пластины должны плотно прижиматься к стенкам корпуса. Решается такая задача либо за счет центробежной силы, прижимающей рабочую часть пластин к стенкам корпуса, либо за счет специальных приспособлений пружинного типа. Роторные насосы шиберного типа могут отличаться друг от друга конструкцией ротора и оснащаться различным количеством пластин, в зависимости от чего они подразделяются на устройства одно-, двукратного и т.д. действия.

Роторные плунжерные насосы по принципу работы и конструктивному исполнению делят на аксиально- и радиально-поршневые. Их рабочими органами являются плунжеры (поршни), которые совершают одномоментное вращательное и поступательное движение внутри корпуса устройства. Отличие таких роторных машин от обычных поршневых заключается в том, что они могут работать и как насосы, и как гидравлические моторы, то есть обладают обратимостью.

Схема роторного плунжерного насоса

Преимущества и недостатки

Можно выделить несколько наиболее значимых преимуществ использования роторных насосов:

  1. более равномерная, если сравнивать роторные насосы с устройствами возвратно-поступательного типа, подача жидкости в трубопроводную систему (между тем из-за особенностей конструкции роторного оборудования обеспечить полностью равномерную подачу не удастся);
  2. обратимость, то есть возможность использования таких устройств как в качестве насоса, так и в роли гидромотора;
  3. отсутствие клапанов, что способствует снижению потерь мощности и, соответственно, повышению КПД;
  4. высокая производительность благодаря работе на значительно более высоких оборотах, по сравнению с устройствами поршневого типа.

Эффективность процесса перекачивания кулачковым ротационным насосом обеспечивается выверенными допусками между корпусом и ротарами

Если говорить о недостатках, которыми обладает роторный насос, то к наиболее значимым из них можно отнести следующие.

  • К среде, перекачиваемой такими насосами, предъявляются высокие требования, так как она не должна препятствовать плотному прилеганию подвижных рабочих элементов к внутренним стенкам корпуса. В частности, перекачиваемая роторными насосами жидкость должна обладать минимальной химической агрессивностью и не содержать абразивных включений.
  • Роторный насос имеет более сложную конструкцию, если сравнивать его с устройствами возвратно-поступательного типа, что сказывается как на его надежности, так и на стоимости производства и технического обслуживания.

Сферы применения

Благодаря широкой универсальности насосы роторного типа успешно используют для перекачки жидкостей следующих типов:

  • продуктов переработки нефти:
  • химических веществ, в том числе и кислот;
  • лакокрасочных материалов;
  • технических жидкостей различной степени загрязнения;
  • пищевых жидкостей, в том числе и масел и др.

Ротационные насосы с полым вращающимся диском

Рабочим элементом роторных насосов данного типа является полый диск, который в ходе своего вращения в корпусе устройства совершает колебания, что приводит к перемещению жидкости от впускного патрубка к выпускному.

Принцип работы роторного насоса с полым диском

Роторные установки, оснащенные полым вращающимся диском, относятся к самовсасывающим реверсивным устройствам, которые можно использовать даже для перекачки жидкостей, содержащих в своем составе твердые примеси. Благодаря невысокой скорости вращения рабочего органа ротационный насос рассматриваемого типа отличается надежностью и долгим эксплуатационным сроком. Для оснащения таких роторных насосов применяют один или два полых диска, вращение которых синхронизируется при помощи специальных механизмов.

Самовсасывающая роторная насосная установка с полым вращательным диском

Среди преимуществ использования роторных насосов с полым диском можно выделить следующие:

  1. возможность запуска без наполнения (жидкость внутри корпуса таких устройств должна присутствовать только перед их первым запуском);
  2. возможность использования для перекачки слишком вязких жидкостей, а также сред, чувствительных к сдвиговым усилиям, благодаря невысокой скорости вращения рабочего органа устройства (кроме того, невысокая рабочая скорость делает такие насосы более долговечными);
  3. возможность перекачки жидкости в обратную сторону с сохранением всех параметров создаваемого потока;
  4. адаптивность рабочих дисков, что позволяет им самовосстанавливаться при износе и термическом расширении (благодаря данному качеству можно успешно применять такие насосы для перекачки жидкостей, содержащих в своем составе твердые частицы);
  5. поднятие перекачиваемой жидкости на большую высоту (до восьми метров);
  6. невысокий уровень шума и вибраций при работе;
  7. высокий коэффициент полезного действия;
  8. сохранение производительности на постоянном уровне вне зависимости от степени вязкости перекачиваемой жидкости;
  9. обширный диапазон вязкости транспортируемых жидкостей – от средней до очень высокой;
  10. простота конструкции и, соответственно, технического обслуживания;
  11. компактность и небольшой вес;
  12. возможность перекачивать жидкости, содержащие газ или воздух в небольших количествах;
  13. возможность некоторое время работать на холостом ходу (всухую) без ущерба для технического состояния оборудования;
  14. создание давления потока жидкости в интервале 8–20 бар (в зависимости от модификации устройства);
  15. возможность перекачивать жидкости, температура которых доходит до 280 градусов Цельсия.

Гидродвигатели. Типы. Характеристики преимущества и недостатки различных конструкций.

Гидравлические двигатели предназначены для преобразования гидравлической энергии (подача, давление) в механическую (крутящий момент, частоту вращения). Существует большое разнообразие типов и конструкций гидравлических двигателей, причем большинство типов гидравлических двигателей имеют конструкцию аналогичную с гидронасосами. Как и рассмотренные в статье 2 насосы, гидродвигатели (гидромоторы) применяющиеся в гидростатических приводах, относятся к гидромашинам объемного типа. Под объемным гидромотором понимают в общем случае гидродвигатель, в котором энергия потока жидкости преобразуется в механическую энергию в процессе перемещения под действием сил давления рабочего элемента (поршня, пластины и др.) при заполнении жидкостью рабочей камеры. Основными параметрами гидронасосов являются:

Читать еще:  Что такое диагностика инжекторных двигателей

• Рабочий объем (удельная подача) [см 3 /об] – это объем жидкости который необходимо пропустить через гидромотор для поворота его вала на 360 градусов или один оборот;

• Рабочее давление [МПа, bar];

• Крутящий момент [Н∙м];

• Частота вращения [об/мин];

Конструктивно различают следующие типы гидромоторов:

• Аксиально-поршневые гидромоторы с наклонным блоком;

• Аксиально-поршневые гидромоторы с наклонным диском;

• Многотактные аксиально-поршневые гидромоторы;

• Линейные гидродвигатели (Гидроцилиндры);

Шестеренные гидромоторы

Шестеренные гидромоторы конструктивно схожи с шестеренными насосами (см. статья 2), отличие состоит в наличии линии отвода рабочей жидкости из зоны подшипников. Это необходимо для обеспечения реверсивности гидромотора. При подаче в гидромотор, рабочая жидкость воздействует на шестерни, создавая при этом крутящий момент на валу.

Шестеренные гидромоторы часто применяются в гидроприводах навесного оборудования мобильной техники, в качестве привода вспомогательных механизмов различных машин, в станочных гидроприводах. Столь широкое распространение они получили благодаря простоте конструкции и сравнительно низкой стоимости.

Шестеренные гидромоторы применяются на частотах вращения до 5000об/мин и давлениях до 200 bar (в специальном исполнении до 10000 об/мин и до 300 bar). Коэффициент полезного действия (КПД), как правило, не превышает 0,9.

Конструкция шестеренного гидромотора показана на рис. 1

Конструктивный вид шестеренного гидромотора и насоса аналогичны, ознакомиться с ним можно в статье 2.

Крутящий момент создаваемый гидромотором определяется как:

∆p – перепад давлений на гидромоторе,

b – ширина шестерен,

m – модуль зацепления,

z – количество зубьев шестерни

Достоинства и недостатки шестеренных гидромоторов:

  • • Простота конструкции.
  • • Частоты вращения до 10000 об/мин
  • • Низкая стоимость

Героторные гидромоторы

Одной из разновидностей шестеренных гидромашин являются героторные гидромоторы. Благодаря своей особенности, получения высоких крутящих моментов при небольших габаритных размерах, эти гидромоторы довольно часто применяются в приводах тихоходных и вместе с тем сильно нагруженных механизмов. Рабочая жидкость подается в рабочие полости гидромотора через специальный распределитель. В рабочих полостях создается крутящий момент, приводящий во вращение зубчатый ротор, который начинает совершать планетарное движение, обкатываясь по роликам. Героторные гидромо­торы отличаются высокой энергоемкостью, возможностью работы при давлениях до 25 МПа. Рабочий объем таких машин достигает 800 см 3 , а развиваемый момент — до 2000 Н∙м.

Существует две конструктивных разновидности героторных гидромоторов: Героторные и героллерные.

Крутящий момент, создаваемый гидромотором определяется по специальным диаграммам, имеющимся в документации на гидроагрегат.

Устройство героторного гидромотора схематично представлено на рис.2.

Внешний вид героторного гидромотора представлен на рис. 3.

Устройство героллерного гидромотора схематично представлено на рис.4.

Внешний вид героллерного гидромотора представлен на рис. 5.

Рис. 2

Рис. 3

Рис. 4

Рис. 5

Достоинства и недостатки героторных гидромоторов:

  • • Простота конструкции.
  • • Большие крутящие моменты
  • • Малые габариты
  • • Малые частоты вращения
  • • Невысокие давления до 21МПа

Пластинчатые гидромоторы.

Пластинчатые гидромоторы по конструкции аналогичны насосам, при этом в отличие от насосов они всегда снабжены механизмом прижима рабочих пластин. Гидромоторы данного типа, как и насосы, могут быть однократного и двукратного действия. Моторы однократного действия – как правило, реверсивные и могут быть регулируемыми, а моторы двукратного действия всегда нерегулируемые и преимущественно нереверсивные. Ввиду ряда конструктивных особенностей моторы данной конструкции широкого распространения не получили.

Гидромоторы данного типа работают на давлениях до 20МПа и частотах вращения до 1500 об/мин. КПД может достигать 0,8.

Крутящий момент создаваемый пластинчатым гидромотором определяется как:

∆p – перепад давлений на гидромоторе,

q – рабочий объем гидромотора,

Конструкция пластинчатого гидромотора однократного действия схематично показана на рис. 6, конструкция гидромотора двухкратного действия — на рис. 7.

Конструктивный вид пластинчатого гидромотора и насоса аналогичны, ознакомиться с ним можно в статье 2.

Рис. 6

Рис. 7

Достоинства и недостатки пластинчатых гидромоторов:

  • • Низкий уровень шума
  • • Низкая по сравнению поршневыми моторами стоимость.
  • • Менее требователен к чистоте рабочей жидкости.
  • • Большие нагрузки на подшипники ротора.
  • • Сложность уплотнения торцов пластин
  • • Низкая ремонтопригодность
  • • Невысокий КПД

Гидравлическое оборудование. Виды и сфера использования

Гидравлическое оборудование — устройства, позволяющие приводить в движение исполнительные механизмы и машины с помощью энергии жидкости — гидравлического масла, находящегося под давлением. Для того, чтобы заставить механизмы двигаться, с помощью гидравлики потребуются разные устройства, одни будут передавать жидкости энергию от двигателя, другие изменять характеристики потока жидкости, третьи преобразовывать энергию потока жидкости в перемещение исполнительных органов машины. Попробуем разобраться какие существуют гидравлические аппараты, для чего они нужны, в каких сферах их применяют, и где купить гидравлические оборудование.

Разновидности гидрооборудования

Для работы современной техники требуется различное гидрооборудование, перечень необходимых устройств может быть очень большим. Для эксплуатации и производства гидравлического оборудования удобно разделить это многообразие на несколько групп.

  • Насосы — устройства позволяющие преобразовать механическую энергию от приводного двигателя в энергию потока жидкости.
  • Гидродвигатели выполняют противоположную насосам роль — преобразовывают гидравлическую энергию в механическую.
    • Гидроцилиндр — гидродвигатель, с помощью которого энергия жидкости преобразуется в линейное перемещение.
    • Гидромотор — гидродвигатель, который позволяет получить вращательное движение.
  • Гидравлическая аппаратура позволяет получить требуемые параметры потока рабочей жидкости.
    • Направляющая гидроаппаратура — позволяет изменять направление движение жидкости.
    • Регулирующая аппаратура необходима для изменения характеристик потока жидкости: расхода, давления.
  • Кондиционеры рабочей жидкости необходимы для обеспечения требуемых качеств жидкости — чистоты, температуры.
    • Фильтры очищают масло от загрязняющих частиц.
    • Маслоохладители и теплообменники обеспечивают нужную температуру жидкости.
  • Гидравлические аккумуляторы позволяют накапливать энергию и, при необходимости, использовать ее.

Рассмотрим подробнее гидравлическое оборудование из представленного списка, попробуем разобраться как оно работает, в каких сферах применяется и на какие характеристики стоит обратить внимание при покупке.

Насосы

В гидравлическом приводе применяют объемные насосы. Принцип их работы основан на цикличном изменении объема рабочей камеры и заполнении ее рабочей жидкостью, при увеличении объема камеры насос заполняется жидкостью, при уменьшении — жидкость вытесняется из насоса. Наиболее часто в гидроприводе экскаваторов, мобильных машин, тракторов применяют шестеренные, пластинчатые, аксиально-поршневые насосы.

Конструкция шестеренного гидронасоса относительно простая, в нем установлены две шестерни одна — ведущая, вторая — ведомая. Поверхности шестерен и корпуса образуют рабочие камеры, которые заполняются жидкостью. Шестеренные насосы устанавливают в систему гидравлики МТЗ и других тракторов.

В пластинчатом насосе рабочую камеру образуют поверхности ротора, статора и пластин. Пластины размещены в пазах ротора, при вращении вала они прижимаются к статору. Из-за того, что ротор установлен с эксцентриситетом относительно статора, объем рабочих камер при вращении вала изменяется — осуществляется перекачивание жидкости. Пластинчатые насосы устанавливают на станции, пресса, технологическое оборудование.

В аксиально поршневом гидронасосе поршни установлены вдоль оси вала, линейное перемещение поршней осуществляется за счет наклона блока цилиндров или опорной шайбы относительно оси вращения вала.

Читать еще:  Амперы при запуске двигателя

Величина хода поршней определяется углом наклона шайбы. Если необходимо изменять рабочий объем насоса, то в аксиально поршневом насосе размещают механизм регулирования угла наклона блока или шайбы, такой насос называют регулируемым. Аксиально-поршневые насосы устанавливают на экскаваторы, подъемно-транспортные машины, спецтехнику, пресса, станки. Гидронасос экскаватора может быть как регулируемым, так и нерегулируемым.

Основными характеристиками гидронасосов являются:

  • подача — количество жидкости нагнетаемой насосом в единицу времени,
  • рабочее давление — давление, при котором производитель гарантирует надежную работу насоса с заданными параметрами.

Чтобы купить насос необходимо учесть не только основные характеристики (давление, расход), но и особенности применения насоса, рабочие температуры, параметры рабочей жидкости, требования по шумовым и вибрационным характеристикам, присоединительные размеры.

Купить гидронасос для экскаватора, трактора, пресса, станка и другой техники можно в магазине гидравлики на сайте zkmgidro.ru.

Гидромоторы

Гидромотор выполняет противоположную насосу функцию — преобразует гидравлическую энергию во вращение вала, он обладает схожей с насосом конструкцией. Некоторые гидромоторы обратимы, то есть могут выполнять функции и мотора и насоса. Аксиально поршневой гидромотор обратим, а шестеренный насос без дренажной линии использовать в качестве мотора нельзя.

Гидромоторы используют для получения вращательного движения исполнительных механизмов. Например, гидромотор экскаватора может приводить во вращение ведущий каток гусениц или использоваться в механизме поворота.

Чтобы выбрать и купить гидромотор нужно знать его марку, или выбрать его по основным характеристикам:

  • расходу жидкости — количеству жидкости проходящему через гидромотор за установленный промежуток времени,
  • рабочему давлению, то есть такому давлению, при котором мотор будет работать с параметрами указанными производителем в паспорте,
  • вращающему моменту — усилию с которым будет вращаться вал гидромотора,
  • частоте вращения — количеству оборотов вала гидромотора за одну минуту.

Гидроцилиндры

Гидравлический цилиндр позволяет преобразовать гидравлическую энергию в линейное перемещения. Гидроцилиндры применяют для подъема и опускания рабочих органов экскаваторов, стрел кранов и грузоподъемных механизмов, для зажимания деталей и перемещения инструмента в станках.

Гидроцилиндр представляет собой трубу — гильзу, в которой может перемещаться поршень, соединенным со штоком, поршень разделяет гильзу на две камеры, с торцов которых установлены передняя и задняя крышки. При заполнении одной из камер поршень перемещается, так как жидкость вытесняет его, вместе с поршнем движется и шток. В гидроцилиндрах одностороннего действия жидкость может поступать только в поршневую полость, обратный ход осуществляется под действием внешних сил. Например в гидроцилиндре подъема в домкрате обратных ход осуществляется под действием массы груза. В гидроцилиндрах двухстороннего действия жидкость может поступать как в поршневую так и в штоковую полости. Когда жидкость заполняет поршневую полость — шток выдвигается, когда жидкость поступает в штоковую полость — шток втягивается. Большинство гидравлических цилиндров экскаваторов, гидроцилиндр МТЗ- двухстороннего действия.

Основными характеристиками гидравлического цилиндра являются:

  • рабочее давление,
  • диаметр поршня,
  • диаметр штока,
  • величина хода поршня,
  • присоединительные размеры.

Усилие, развиваемое гидроцилиндром также важнейший параметр, оно определяется площадью поршня и давлением в системе.

Купить гидроцилиндр можно на сайте компании ООО «ЗКМ» в разделе каталог — гидроцилиндры.

Распределители

Гидрораспределители позволяют соединять между собой различные каналы гидравлической системы, например, подавать жидкость от насоса в поршневую полость цилиндра, а при переключении — в штоковую. С помощь гидрораспределителя можно управлять гидроцилиндром, заставляя его шток перемещаться. В одном распределителе может быть установлен один золотник для управления одним гидроцилиндром или несколько золотников для управления несколькими цилиндрами, в этом случае гидрораспределитель называют секционным.

Распределители тракторов и экскаваторов, такие как гидрораспределитель МТЗ — секционные.

Основными характеристиками распределителями являются:

  • рабочее давление;
  • расход, который может указываться непосредственно в обозначении распределителя, гидрораспределитель р 80 работает при расходе жидкости до 80 л/мин;
  • монтажное исполнение (тип присоединения, размеры);
  • схема золотника.

Подобрать и купить гидрораспределитель с нужными характеристиками помогут специалисты компании ООО «ЗКМ».

Клапаны

Гидравлические клапаны позволяют получить нужные характеристики потока рабочей жидкости регулировать расход, ограничивать давление системе.

Гидравлический обратный клапан пропускает жидкость только в одном направлении. Он может быть управляемым, тогда при наличии сигнала он открывается и пропускает жидкость, такой клапан называют гидрозамком.

Гидравлический предохранительный клапан ограничивает максимальное давление в системе, защищая гидравлическое оборудование от чрезмерно высокого давления. Предохранительные клапаны устанавливают во все гидравлические приводы начиная от прессов и насосных станций, заканчивая экскаваторами, подъемными машинами, самолетами.

Редукционный клапан позволяет регулировать и поддерживать давление в отводимой от основной линии. Его можно использовать для ограничения усилия зажима деталей на станках.

Тормозной гидравлический клапан необходим для ограничения скорости движения исполнительных механизмов при действии попутной нагрузки. Тормозные клапаны используют в гидроприводах подъемно-трансопртных машин, экскаваторов, мобильной техники.

Подбор клапана осуществляется с учетом расхода рабочей жидкости, рабочего и настраиваемого давления, присоединительных размеров.

Фильтры

Гидравлический масляный фильтр удерживает загрязняющие частицы, которые могут вызвать поломку гидравлического оборудования. В корпусе гидравлического фильтра устанавливается фильтрующий элемент, который и удерживает загрязнения. Со временем фильтроэлемент загрязняется и его необходимо заменить.

Фильтры могут устанавливаться с линиях нагнетания, всасывания, слива. Гидравлический фильтр МТЗ устанавливается в линию слива.

При выборе фильтра следует учесть расход жидкости в системе, рабочее давление, необходимую тонкость фильтрации — размер частиц, которые с вероятностью 95% будет задерживать фильтр.

Компания ООО «ЗКМ» поставляет фильтры и фильтрующие элементы во все регионы России, купить гидравлический фильтр можно непосредственно на сайте компании.

Винтовые гидравлические двигатели

4.4.1. Принцип действия и устройство

Винтовой двигатель представляет собой забойный агрегат (рис.4.9) с гидравлическим объемным двигателем, приводимый в действие потоком бурового раствора, который закачивается в бурильную колонну с поверхности насосами.

Винтовой двигатель состоит из статора и эксцентрично расположенного винтового ротора, представляющего собой как бы зубчатую пару с внутренним зацеплением с винтовыми зубьями. Число зубьев статора на один больше зубьев ротора, что позволяет ему совершать планетарное движение, как бы обкатываясь по зубьям статора: ось ротора при этом движется по окружности диаметром, равным двойному эксцентриситету е. Для соединения ротора с валом шпинделя, соосно расположенного с корпусом, служит шаровая двухшарнирная муфта, компенсирующая эксцентриситет.

Шпиндель винтового двигателя сходен по конструкции со шпинделем турбобура. Он укреплен на радиальных резинометаллических подшипниках и снабжен шаровой пятой для восприятия осевой нагрузки. Вал шпинделя — пустотелый, в верхней части снабжен каналами для прохода жидкости к долоту, присоединяемому через переводник к нижней части вала двигателя. Корпус последнего через переводник прикрепляется к нижней части бурильной колонны.

По принципу действия винтовые двигатели относятся к объемным роторным машинам. Основными элементами рабочих органов таких машин являются: статор — корпус с полостями, примыкающими по концам и камерам высокого и низкого давления; ведущий ротор — винт, вращающий момент которого передается валу шпинделя;

Винтовые поверхности статора и ротора делят рабочий объем двигателя на ряд полостей. Полости, связанные с областями высокого и низкого давления, называются камерами, а замкнутые полости — шлюзами. В поперечном сечении имеются камеры, разделенные между собой контактной линией. Каждая камера по мере вращения периодически связывается с полостями высокого и низкого давления и в каждый заданный момент времени становится шлюзом. Теоретически на длине одного шага происходит разобщение полостей, находящихся выше и ниже рабочих органов.

Читать еще:  Экстремальный тюнинг двигателя ваз

Поверхности винтовых зубьев ротора и статора, взаимно пересекаясь, отсекают область высокого давления жидкости от области низкого давления и препятствуют ее свободному перетоку. Под действием перепада давления жидкости на ведущем винте образуется вращающий момент, передаваемый на вал шпинделя. Чем больше перепад давления на двигателе, тем больше вращающий момент. По принципу действия винтовой двигатель можно сравнить с поршневым гидравлическим двигателем, снабженным поршнем, который перемещается вдоль оси ротора по винтовой линии. Роль поршня выполняют отсекающие поверхности винтового ротора.

Винтовые двигатели и насосы имеют ряд преимуществ, что позволило использовать их как гидравлические забойные двигатели:

· отсутствие клапанных и золотниковых распределителей потока жидкости;

· отсутствие относительного перемещения трущихся деталей пары

· непрерывное изменение положения линии контакта рабочих органов при вращении ротора позволяет потоку бурового раствора удалять абразивные частицы из камер и шлюзов.

Условия создания шлюзов в паре ротор — статор объемных винтовых двигателей следующие:

число зубьев или заходов статора z1 должно быть на единицу больше зубьев ротора z2

отношение шага зубьев статора Т к шагу зубьев ротора должно быть пропорционально отношению их числа, т. е.

(4.16)

Отношение чисел зубьев статора и ротора называется передаточным числом

(4.17)

Теоретически винтовой двигатель может иметь любое передаточное число.

4.4.2. Основные параметры винтовых двигателей

Винтовые двигатели имеют разные передаточные числа, зависящие от соотношения числа зубьев ротора и статора. Двигатели, имеющие

u = 1:2, развивают максимальные частоты вращения и минимальные вращающие моменты. Их применяют, когда требуется высокая частота вращения.

По мере увеличения числа заходов ротора (т. е. передаточного отношения) уменьшается частота вращения и увеличивается вращающий момент. Это объясняется тем, что многозаходный роторный механизм, каким является винтовой двигатель, в отличие от других механизмов представляет собой соединение гидравлического двигателя и понижающего планетарного редуктора, причем передаточное число редуктора пропорционально заходности ротора.

Многозаходные рабочие органы имеют большую протяженность контактных линий по сравнению с рабочими органами, имеющими отношение u=1:2. Это предопределяет снижение механического и общего к. п. д. винтовых двигателей с многозаходными рабочими органами. В то же время двигатели с многозаходными рабочими органами обладают большой нагрузочной способностью и более жесткой характеристикой, что обусловило выбор для забойного винтобура Д2-172М передаточного числа

Вращающий момент — основная характеристика винтового двигателя. При анализе его рабочего процесса рассматривается действие перепада давления жидкости в камерах пары ротор — статор, так как на этой длине происходит разобщение камер с полостями высокого и низкого давления, расположенных выше и ниже рабочих органов. В каждом поперечном сечении на длине шага ротора возникает неуравновешенная гидравлическая сила R1, действующая на центр вращения ротора (рис. 4.9).

В двигателях с многозаходным ротором площадка, на которую действует гидравлическая сила, непостоянна по длине шага. Если провести второе сечение на некотором расстоянии от рассматриваемого, то возникает гидравлическая сила на единице длины рабочего органа. Вращающий момент (в Н·м) на длине шага ротора

Mt=pDtez1/2, (4.18)

где р — перепад давления, Па; D — расчетный диаметр ротора, м; t — шаг зубьев ротора, м; е — эксцентриситет, м; z1 — число зубьев статора.

Поперечная удельная сила (в Н/м) на длине половины шага ротора

(4.19)

Вращающий момент винтовых двигателей

(4.20)

где М — удельный момент винтового двигателя

(4.21)

(се — безразмерный параметр, являющийся отношением эксцентриситета е к радиусу зуба зацепления r).

Удельный момент зависит от числа заходов ротора и безразмерного параметра се. По физическому смыслу он представляет собой момент винтового механизма с единичными размерами (D, е и t) и единичным перепадом давления. Удельный момент минимален для однозаходных механизмов и возрастает с увеличением числа заходов.

Частота вращения вала винтовых двигателей объемного действия

(4.22)

где Q — расход жидкости, подаваемой в двигатель, м 3 /с; V — объем камеры рабочего органа двигателя, м 3

(4.23)

Здесь Fш — площадь поперечного сечения шлюза, м 2 ; Т — шаг винтовой поверхности статора, м; z2 — число зубьев ротора.

В винтовых двигателях с гипоциклоидальным центроидным зацеплением площадь сечения шлюза

(4.24)

Кроме того, поскольку передаточное число определяет скорости переносного ωпер и относительного ωот движений, можно записать

(4.25)

После подстановок и соответствующих преобразований получим выражение для расчета частоты вращения выходного вала винтового двигателя:

(4.26)

где no — удельная частота вращения выходного вала безразмерный параметр, определяемый заходностью рабочего органа двигателя и коэффициентом се.

(4.27)

По физическому смыслу величина no представляет собой частоту вращения винтового механизма с единичными геометрическими размерами и единичным расходом жидкости. Винтовые двигатели с однозаходным ротором являются высокоскоростными, поэтому более рациональны многозаходные винтовые механизмы. В частности, для получения частоты вращения выходного вала двигателя в пределах 100 — 200 об/мин число заходов ротора должно быть не менее восьми. В двигателях Д1-195 и

Д2-172м выбрано число заходов ротора, равное девяти.

4.4.3. Характеристика забойного винтового двигателя

Энергетические параметры винтового гидравлического двигателя определяются его передаточным числом, перепадом давления и расходом рабочей жидкости. При постоянном расходе Q двигатель характеризуется изменением вращающего момента М от перепада давления Dр, частоты вращения п вала шпинделя, мощности N и к.п.д. η.

На рис. 4.10 приведена рабочая характеристика винтового забойного двигателя Д2-172м.

Наибольшая частота вращения соответствует режиму холостого хода, а максимальный вращающий момент — режиму торможения при n = 0. Двигатель запускается при перепаде давления Dр = 1÷2 МПа. Это давление расходуется на механические и гидравлические потери. При увеличении момента торможения перепад давления возрастает, одновременно повышаются мощность и к. п. д.

Режим максимальной мощности называется эффективным, а наивысшего к. п. д. — оптимальным. Обычно в этих двигателях они не совпадают. Зона устойчивой работы двигателя находится между этими режимами. В рабочем режиме гидромеханический к. п. д. составляет 0,4 — 0,5, объемный — 0,8 — 0,9, а общий достигает 0,5 — 0,55. При достижении предельного момента торможения вал двигателя останавливается, а величина давления определяется герметичностью пары ротор — статор. При нарушении герметичности раствор протекает через двигатель.

В рабочей области от режима холостого хода до оптимального частота вращения п прямо пропорциональна расходу Q, поэтому при изменении расхода Q1 на Q2частота вращения

С увеличением расхода раствора диапазон устойчивой работы двигателя расширяется. В винтовых двигателях частота вращения существенно зависит от величины вращающего момента. В этих двигателях по мере их износа характеристики ухудшаются. Это объясняется повышением утечек жидкости через зазоры по мере их увеличения при износе. Износ ротора и статора по выступам и профилю зубьев приводит к нарушению герметичности рабочей пары, увеличению объемных потерь и снижению нагрузочной характеристики. Износ рабочей пары определяет межремонтный срок службы двигателя, составляющий 50 — 200 ч в зависимости от качества двигателя и свойств бурового раствора.

Техническая характеристика винтовых двигателей

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector