Sw-motors.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лекция № 8

Лекция № 8. системы пуска и реверсирования. оборудование и обслуживание систем. СИСТЕМЫ УПРАВЛЕНИЯ. СОСТАВ И ФУНКЦИИ СИСТЕМЫ – 2 ЧАС.

Системы пуска

Состав и назначение элементов системы пуска сжатого воздуха

В систему пуска двигателя входят следующие элементы:

— воздухохранители. Их вместимость должна обеспечивать 12 пусков реверсивного дизеля и 6 пусков нереверсивного. На воздухохранителе запорный клапан со свободным ходом.

— Главный пусковой клапан (маневровый) Он соединяет при пуске пусковую магистраль с воздухохранителями (баллонами) и разобщает их при переводе двигателя в работу и при остановке

— Пусковые клапаны рабочих цилиндров. Через них сжатый воздух (пусковой) поступает в рабочие цилиндры

— Воздухораспределитель.Он управляет открытием и закрытием пусковых клапанов цилиндров в последовательности определяемой порядком их работы.

— Трубопровод пускового воздуха

Принципиальная схема пуска сжатым воздухом показана на рис. 80

3. Пусковые клапаны цилиндров

15.Главный пусковой клапан

9. Воздухораспределитель золотникового типа (одна золотниковая коробка)

13. Кулачковая шайба

12. Магистраль управления воздуха

Воздух с поста управления (ПУ) поступает к главному пусковому клапану после открытия вентиля на воздухохранителе.

При установке рукоятки в положение «Пуск» воздух одновременно подводится к цилиндровым пусковым клапанам и воздухораспределителю. Управляющий воздух от воздухораспределителя открывает в заданной последовательности пусковые клапаны. Воздух из воздухохранителей поступает в цилиндры. Кулачная шайба 13, вращаясь поочередно воздействует на золотники 10, которые открывают доступ воздуха по магистрали 7 к соответствующим пусковым клапанам. В исходное закрытое положение золотники возвращаются пружинами, которые со временем могут терять свою упругость. Тогда их следует заменить. При эксплуатации необходимо следить за отсутствием заедания золотников и отсутствии их чрезмерного износа. Рекомендуют смазать их маслом. Заедание золотников возможно при загрязненном воздухе. Поэтому перед пуском надо продувать воздухохранители удаляя оттуда масло, воду и механические примеси (продукты коррозии, пыль).

При автоматическом запуске при достижении пускового задания по частоте вращения подача пускового воздуха прекращается и начинается подача топлива (рукоятка управления в положении «Работа»)

Если валоповоротное устройство не выведено из зацепления пуск блокируется (невозможен).

Клапан откроется только после подачи управляющего воздуха по трубопроводу 7, так как сила, действующая на тарелку клапана, уравновешивается такой же силой действующей на разгрузочный поршень 4.

Управляющий воздух подводится к золотникам воздухораспределителя.

При эксплуатации необходимо следить за отсутствием заедания золотников и отсутствии их чрезмерного износа. Рекомендуют перед пуском смазать их маслом.

Для обеспечения пуска при любом положении коленвала подвод должен осуществляться: у 2х-тактного – не менее чем к четырем цилиндрам; у 4х-тактных не менее чем к шести.

Пусковые клапаны бывают с пневматическим управлением (без и с диффе-ренциальным) поршнем и автоматические (без разгрузочного поршня)

Воздухораспределители бывают дисковые и золотниковые

Рассмотрим схему пуска с автоматическими пусковыми клапанами и дисковым воздухораспределителем.

На рисунке 74 приведена схема пуска сжатым воздухом

2. Редукционный клапан

4. Пусковой клапан

В воздухораспределителе (рис. 75) сжатый воздух поступает через штуцер 1, затем через камеру и отверстие 4 в диске 5 канал 6 штуцер и трубопровод в пусковой клапан и открывает его.

При вращении диска, отверстие сообщается с другим каналом, и воздух поступает в следующий цилиндр

Схема воздухораспределителя золотниковаго типа — на рисунке 83.

На рисунке 76 изображен пусковой клапан

Пружина 12 прижимает диск 4 к корпусу через ниппель 1 воздух поступает в пусковой клапан и открывает клапан 3. Потом пружина 4 его закрывает.

Рис. 83. Воздухораспределите­ль дизеля «Бурмейстер в Вайи»

На рисунке 154 а, б и в изображены элементы пусковой системы двигателей Зульцер.

Главный пусковой клапан дизеля Зульцер (рис. 154в)

Воздух подводится в корпус 15 главного пускового клапана давит на тарелку 1 и прижимает ее к седлу 2. Когда нет давления воздуха клапан прижимается пружинкой 3.

Из полости N воздух поступает в корпус клапана-золотника 10 и прижимает его к седлу.

При переводе рукоятки в положение «ПУСК» воздух по штуцеру 7 поступает под поршень 8 клапана-золотника и поднимает его.

Воздух поступает к воздухораспределителю и под поршень 4 клапана 1, который идет вверх, при этом воздух из баллона через открытый клапан 1 идет к пусковым клапанам на цилиндрах дизеля. Отверстие Т, которое сообщается с атмосферой перекрыто штоком клапана.

При переводе рукоятки в положение «Стоп» или «Работа» нагрузочный клапан соединяет полость под поршнем 8 с атмосферой. Клапан-золотник сядет под действием пружины. Полость «К» соединится с атмосферой. Воздух из-под поршня 4 уйдет через полость «К» в атмосферу. Пружина 3 посадит главный пусковой клапан в гнездо 2. Из всех пусковых клапанов и трубок воздух через полости К и Т уйдет в атмосферу.

Воздухораспределитель (см. рис. 154б) золотникового типа. Привод золотника 5 через толкатель от кулачковой шайбы 3 на распредвал 4. После открытия главного пускового клапана воздух поступает в полость оттуда по сверлению 7 вверх в полость М. Золотник идет вниз. Воздух из полости С идет в полость Е и оттуда в пусковой клапан. Полость D сообщается с полостью А и с атмосферой. При положении ролика 2 на цилиндрической части кулачной шайбы (а до этого ролик был во впадине, так как шайба имеет отрицательный профиль) золотник 5 передвигается в верхнее положение, воздух через ГПК через полость С поступает в полость D и идет в пусковой клапан цилиндра закрывая его. Одновременно из верхней части пускового клапана воздух идет в полость Е воздухораспределителя и уйдет в атмосферу.

Рисунок 154 – Элементы пусковой системы двигателей Зульцер: а – пневматический пусковой клапан; б – воздухораспределитель; в – главный пусковой клапан.

Пусковые клапаны, как правило, имеют пневматический привод. Управляющий воздух, нарушая равновесие давления, перемещает поршень 2 вниз на открытие (рис. 156). Необходимо следить за состоянием уплотнительных колец. Они со временем высыхают.

Открытие пускового клапана часто затрудняется противодавлением в цилиндре. Запаздывание может быть значительным (по данным осциллографирования двигателя 5DKPH 50/100 оно достигало 35° П.К.В.).

Этот недостаток устраняется при применении цилиндровых пусковых клапанов с дифференциальным поршнем.

На рисунке 154а показан пусковой клапан, где дифференциальный поршень 6 управляет открытием, поршень 5 закрытием, а поршень 3 уравновешивает давление пускового воздуха на тарелку клапана.

Открытие. Воздух поступает в полость D и двигает поршень 6 на 2-3 мм.

Верхнее кольцо 7 открывает доступ воздуха в полость С.

В результате быстрое открытие.

Закрытие. Из полости D воздухораспределитель посылает воздух под поршень 5. Из полостей С и D пускового клапана над поршнем 6 воздух стравливается.

1. Быстро открывается без запаздывания.

2. Не захлопывается от противодавления, что обеспечивает быструю остановку во время реверса при еще высокой частоте вращения на передний ход.

3. Исключается заброс пламени из цилиндра в пусковой трубопровод (из-за наличия дифференциального поршня 6)

Реверс дизеля осуществляется поворотом распредвала, изменяя его положение относительно коленвала, при этом в один из цилиндров находящихся в начале такта сжатия поступает воздух и застопорит коленвал. Затем произойдет изменение направления вращения, т.к. распредвал и кулачные шайбы провернулись.

Рисунок 156 – Пусковой клапан

Система управления

На рис. 2 дана упрощенная схема системы управления двигателя ДКРН (БМЗ).

Управление осуществляется пускорегулирующей рукоятки 2 и рукоятки 5 из положения «Стоп» в рабочее положение «Вперед» («Назад») осуществляется через клапан 4 (6) и усилитель У воздействие на механизм реверсирования, который устанавливает воздухораспределитель 7 и кулачковый вал в нужное положение. Переводом рукоятки 2 из положения «Стоп» в положение «Пуск» с помощью клапана 3 и усилителя приво­дят в действие подсистему запуска.

Сжатый воздух из баллонов через невозвратный клан, предназначенный для предотвращения обратного прорыва возду­ха и газа в случае взрыва в цилиндре дизеля, до запуска поступает в полости главного пускового клапана 10.

Рис. 2. Схема системы управления

Усилия, со­здаваемые воздухом в полостях А, Б и В, удерживают клапан 10 в закрытом состоянии. Воздух пройдет через главный пус­ковой клапан 10 лишь тогда, когда в его полостях В и Б будет снижено давление вследствие впуска воздуха в клапан управ­ления пуском 8, приводимый в действие клапаном 3. По маги­страли 11 сжатый воздух поступает в пусковые клапаны 9, уста­новленные на крышках цилиндров двигателя, и в воздухорас­пределитель 7. Пусковые клапаны открываются поочередно под действием воздуха управления, поступающего в полость Д из воздухораспределителя 7.

После раскрутки КШМ рукоятка 2 переводится в положение «Работа», чем отключается пусковая подсистема и с помощью клапана 1 вводится в действие подсистема автоматического ре­гулирования нагрузки. Нагрузка двигателя устанавливается автоматическим регулятором 15, выходной вал которого через усилитель соединен с отсечным механизмом 14 ТНВД 13. Ре­жим регулятора 15 по частоте вращения п зависит от положе­ния рукоятки 2.

Блокирующее устройство 12 выводит отсечной механизм в положение «Стоп» и (или) удерживает его в этом положении в период реверса или в случаях недопустимого повышения час­тоты вращения коленчатого вала ппред, падения давления мас­ла на охлаждение поршней рм.охл, падения давления масла на смазку подшипников движения рм.

Пуск и остановка двигателя

Перед пуском двигателя проверить наличие охлаждающей жидкости в системе охлаждения и уровень масла в картере двигателя. Подкачать топливо в карбюратор рычагом ручного привода топливного насоса.

Пуск холодного двигателя при температуре от 0 С и выше

Установить рычаг переключения передач в нейтральное положение. Несколько раз резко нажать на педаль управления дроссельной заслонкой карбюратора. Выключить сцепление и включить зажигание и стартер. Стартер держать включенным до пуска двигателя, но не более 5 с. Интервалы между включениями стартера должны быть не менее 10-15 с. Если двигатель не пускается после трех попыток, прекратить пуск, выяснить и устранить неисправность.

Как только двигатель начнет работать, немедленно отпустить ключ выключателя зажигания. Прогреть двигатель. Температура охлаждающей жидкости прогретого двигателя должна быть не ниже 60 С.

Категорически запрещается с целью ускорения прогрева производить его с большой частотой вращения коленчатого вала.

Пуск холодного двигателя при температуре от 0 до -20 С

Перед пуском выполнить следующие операции:

  1. Отключить масляный радиатор.
  2. Закрыть жалюзи радиатора и установить утеплительный чехол облицовки радиатора.
  3. Провернуть пусковой рукояткой коленчатый вал двигателя на 3-5 оборотов.
  4. Вытянуть до отказа ручку управления воздушной заслонкой карбюратора (для этого необходимо предварительно нажать на педаль управления дроссельной заслонкой).

Последующие операции повторить в соответствии с указаниями «Пуск двигателя при 0 С и выше».

При прогреве двигателя постепенно, по мере увеличения частоты вращения коленчатого вала, утопить ручку управления воздушной заслонкой до упора.

Пуск холодного двигателя при низкой температуре (ниже -20 С)

Пуск холодного двигателя при низкой температуре производить после его предварительного прогрева пусковым подогревателем (порядок прогрева описан в разделе «Пусковой подогреватель»). При отсутствии пускового подогревателя прогревать другим каким-либо способом (паром, горячей водой или воздухом и др.) Дальнейшая последовательность операций остается такой же, как и в случае пуска холодного двигателя при температуре окружающего воздуха до -20 С.

Читать еще:  Греется двигатель хендай акцент причины

Пуск горячего двигателя

При пуске горячего двигателя не прикрывать воздушную заслонку карбюратора и не нажимать резко на педаль управления дроссельной заслонкой, так как это приведет к переобогащению смеси и затруднит пуск двигателя. Если все же горячая смесь оказалась переобогащенной, то необходимо продуть цилиндры воздухом, для чего плавно нажать до отказа на педаль управления дроссельной заслонкой карбюратора и немедленно провернуть стартером коленчатый вал двигателя на несколько оборотов.

Остановка двигателя

Для постепенного и равномерного охлаждения двигателя необходимо перед выключением зажигания дать ему поработать в течение 1-2 минут с малой частотой вращения коленчатого вала. наверх Что такое предпусковой подогреватель и нужен ли он?

Суть там такова: это симбиоз обогревателя Запоржца (та же свеча, бензонасос и прочее) и водяного котла. Недостатки: хорошо работает только в жаркую погоду, а зимой бензин испаряется плохо, свечу постоянно заливает и если аккумулятор не новый или подсел (что и бывает чаще всего на морозе) то, скорее всего, посадишь его до нуля, но не пустишь ни обгреватель, ни тем более двигатель (свеча потребляет очень большой ток, а еще там есть контрольная спираль, вентилятор, щиток управления).
Мне, к сожалению, пришлось столкнутся с этими агрегатами в разном исполнении и на разных автомобилях и должен заметить, что если делать все по инструкции, черта с два он заработает — еще надо знать и конкретную настройку агрегата. Если Вам удастся (на морозе) все разобрать, почистить свечу, почистить контакты насоса,зарядить аккумулятор, изучить все повадки этого девайса и его запустить — о чудо! Он завоет и станет жрать бензин, через полчаса (а это 5 — 10 л бензина) температура двигателя 40 градусов. А вообще это изделие нужно только при температуре ниже минус 20 градусов, а коли есть необходимость заводиться при таких температурах, то лучше купить обычную паяльную лампу — в сто раз надежнее и удобнее, а во вторых можно прогреть и картеры мостов.
И чтобы было еще проще и удобнее, можно сделать кожух из жести, куда сверху вставляется лампа (очень хорошо видно на автомобилях ЗИЛ-157 — там именно так обеспечивается прогрев). Единственное условие — обязательно надо очистить двигатель от масляной шубы из грязи, иначе масло загорится. [Barsik]

Есть такой девайс, производства Тюменского завода АТЭ, монтируется в систему охлаждения, имеются монтажные комплекты практически для любых типов двигателей, в т. ч. и для УАЗа. Имеет встроенный терморегулятор, чтобы не было перегрева, так что можно оставлять на ночь. Масло в двигателе тоже неплохо нагревается, просто от самого двигателя. [Roger]

Замечательнейшая штука, позволяющая в любой мороз уверенно запустить двигатель. Слухи, что он способен намертво посадить аккумулятор, сильно преувеличены. Запальная свеча работает секунд 30-40, а моторчик вентилятора за 15-25 минут съест не более 1-2 АЧ. А дальше все как летом — легко и просто. Поскольку греются тосол и масло одновременно, сравнения с паяльной лампой — не в пользу последней.
Процесс обучения лучше проводить не в самое холодное время года. Как правило, с 3-4 раза получается у всех — в букваре все довольно толково расписано в расчете на солдата. Открытый огонь, бензин, масло, собранные в одном месте, предполагают наличие огнетушителя и присмотра за работой котла.
Из советов по доведению до ума. Запальная свеча должна стоять не абы как, а прорезью вверх. Шланг воздуховода от вентилятора к котлу заменить при первой возможности на металлический гофрированный рукав. Моторчик вентилятора стоит сделать двухскоростным, заменив тумблер его включения на трехпозиционный и добавив в схему нихромовою спираль аналогично моторчику вентилятора печки — в начале розжига малые обороты, затем большие. Последний совет из разряда изысков — кусок катанки, согнутой маленькой кочергой для перевода патрубка в поддоне из транспортного положения в рабочее, сохранит чистыми рукава одежды.
Ну а теперь представим альтернативу — минус 30-40, прикуривание, буксировка, переноска аккумуляторов, подогрев свечей и прочие советы бывалых. И хорошо, если все это в городе, вблизи жилья — а если в поле, в лесу? Учите матчасть, мужики! [Akhmetov Viacheslav]

Видел на «ладоге» у ребят приспособу такую — труба на треноге, загнутая на 90 град вверх, в горизонтальную часть трубы вставляется паяльная лампа, а верхнюю часть можно использовать как предпусуковой подогреватель, или поставить котелок и готовить пищу.[Носорог3162]

20см (материал типа нержавейки) длиной 1м или чуть длиннее. Один конец заварен и ближе к концу на трубе в верхней части трубы прямоугольный вырез

20х10см с наваренными типа сопла листами, снизу типа сошки из мягкого металла (гнется и можно регулировать высоту). В открытую часть вставляешь паяльную лампу, а «сопла» направляешь куда надо. Например, на картер двигателя. [b356]

Приспособление для прогрева от ГАЗ-69: (фото [dive])


Нет такого масла в нынешних движках, что б оно насмерть замерзло в Москве. Начнем сначала: УАЗ — военная машина, и спроектирован для запуска в любую погоду, и если он не завелся, значит, виноват не УАЗ и не мороз. Во-вторых: морозы и раньше были, и про синтетику люди не знали, а УАЗы (ГАЗы-69) ездили. Наверное, не надо искать панацеи в наклейках масел, а надо понимать как на морозе завести машину.
Начинать надо с АКБ — если дохлая, выкидывай, а вот с маслом не торопись — не в нем дело, а если уж совсем загустело, то бери рукоятку и крути. Для пользы дела влей стакан бензина (правильные водители, когда приедут, обязательно вливают стакан бензина в горячее масло — на следующий день легкий запуск обеспечен, так как масло будет жиже синтетики, а пары бензина дополнительно обогатят смесь. Двигателю от этого никакого вреда).
Хуже, если машина простояла на улице 2-3 суток, а термометр покажет -20 и ниже до -25. Действия те же, и рукояткой покрутить придется подольше, но проблема будет в том, что смесь обычно уже не воспламеняется и оседает на свечах и что б проблем было меньше, обязательно перед началом зимы поставь новые свечи, ну и считаем де факто, что карб почищен, а зажигание отрегулировано и выставленно ранее (если это не сделано, то делаем). Подогрев смеси возможен паяльной лампой, но делать это надо аккуратно, разогревая впускной коллектор. Ей же греем и масло в картере двигателя.
Если термометр укажет ниже -25 до -35, то действия те же, только разогревать теперь еще придется и картеры мостов, коробку, раздатку и бортовые редуктора.
Хуже, когда -40 — вот здесь может замерзнуть нигрол (ТАп-15в по научному) и тогда действительно будут проблемы (ТАД-17 еще живой при этой температуре). Если ожидается постоянная эксплуатация при -40, тогда, конечно, смазки лучше поменять.
Также очень полезен баллончик с эфиром — он замаскирован в магазине под Средство для облегчения пуска в мороз, но надо уметь пользоваться. Обычно мне одного хватает на московскую зиму. [Barsik] наверх Как запустить в одиночку двигатель с севшим аккумулятором?

  1. Попробовать ставиться только на горках. Честно говоря, другого способа пожалуй и не знаю, тем более, что на моем аппарате кривого стартера не предусмотрено. (лебедка)
  2. У меня была дурацкая привычка оставлять гореть фары. Пару раз на этом крупно залетел — прокуковал по N часов. После этого случайно нарвался на забавное устройство под названием Power Bank — автономный аккумулятор на 6 ач, можно подзаряжать как в машине через прикуриватель, так и от 220 в, в комплекте пара специальных проводов с крокодилами. Обеспечивает крутку движка примерно волговских параметров в течение минут пяти. Летом я от него кормлю 400-свечовый фонарь прожектор или переноску с лампой дневного света (хватает на несколько часов), а зимой таскаю под сиденьем в качестве страховочного варианта. [Kirasir]

Общие положения:
— прокрутить «ручным стартером» несколько раз;
— если холодно, то на несколько секунд включить фары. Да, да я не шучу. При этом через аккумулятор протечёт приличный ток и он чуть подогреется, и он благоприятно отнесется к последующему запуску;
— если есть теплое помещение, то неплохо там аккумулятор подогреть;
— ни в коем случае долго не крутить. Лучше пол-минуты подождать и еще раз попробовать;
— обмотка возбуждения генератора прилично току берет. поэтому при запуске можно ее отключить. После запуска можно её обратно поключить. [Jora]

Иногда помогает замыкание контактов прямо на стартере, т. е. если при включенном зажигании на стартер не хватает мощи, то есть шанс замкнув + , клемму втягивающего и непосредственно клемму стартера, еще немного покрутить двигатель. Для этого подходит рожковый ключ 17х19 [Zhivai]

Кривой стартер даже на морозце позволяет нормально запустить мотор (при минус 10 это точно), и телосложение здесь ни при чем, а вот если зажигание выставлено неправильно то конечно можно и в лоб рукояткой получить , так что совет один если заводить то надо быть на 100 процентов быть уверенным что с зажиганием все ОК.
Второе. При заводке не надо из себя изображать стартер т.е ручку не надо крутить все время в одном темпе, а надо провернуть до сжатия и этот момент резко крутануть при чем делать надо именно резко (подсосос и ручной газ на максимуме если двигатель холодный, если горячий то подсос вообще не трогать, а ручной на максимуме). А вообще кривым заводятся даже V-восьмерки (ЗИЛ- 130, ГАЗ-66 ), а вот двигатель нонешних жигулей или москвича таким методом вряд ли заведется, так как имеет большую степень сжатия. [Barsik]

Для тех, у кого напрочь отсутствует пусковая рукоятка или возможность ее использования — отключается передний мост, поддомкрачивается одно (или оба, что лучше) заднее колесо. Втыкаем четвертую передачу, наматываем длинную веревку на колесо и дергаем. НО вот если в мосты установлены блокировки — нужно домкратить оба колеса однозначно! [С. Василенко «stalker»]

Что такое форсированный пуск двигателя

Пуск в работу судового двигателя в ход

К режимам работы судового двигателя относятся: пуск двигателя в ход, работа на малых оборотах, работа на швартовах, работа в ходу судна, рабо­та в ходу на мелководье и в штормовую погоду. Пуск двигателя в ход заключается в сообщении его коленчатому валу такого числа оборотов в минуту, при котором могло бы произойти самовоспламенение топлива, поданного в цилиндр в этот период. Пуско­вой механизм, который приводит во вращение коленчатый вал двигателя в период пуска его в ход, должен преодолеть работу сил сопротивления.

К силам сопротивления, возникающим в двигателе при раскручивании коленчатого вала, относятся: силы трения движущихся деталей, силы со­противления газового потока при впуске и выпуске, силы сопротивления, создаваемые навешенными механизмами. Если не учитывать утечку сжимае­мого воздуха в цилиндре двигателя, то работа, затрачиваемая на сжатие воздуха, примерно равна возвращаемой работе расширения его.

Читать еще:  Что такое модулятор двигателя

Таким образом, работа сжатия мало влияет на суммарную работу сил сопротивления двигателя. Работу сил сопротивления принято оценивать величиной среднего давления p мех .

Опытные данные показывают, что с уменьшением температуры стенок двигателя и увеличением пусковых чисел оборотов р мех резко возрастает. Минимальное пусковое число оборотов двигателя зависит от: теплового состояния двигателя, величины отношения поверхности камеры сжатия к ее объему, угла опережения подачи топлива, количества подаваемого топ­лива за цикл, сорта топлива и масла, степени сжатия, состояния износа поршневых колец и рабочей втулки цилиндра, типа и состояния топливной аппаратуры.

Чем выше температура стенок цилиндра и чем меньше отношение по­верхности камеры сжатия к ее объему, тем меньше требуется минимальное пусковое число оборотов. Оптимальное значение угла опережения подачи жидкого топлива с точки зрения пусковых качеств двигателя главным обра­зом зависит от способа смесеобразования и от сорта топлива.

С увеличением количества подаваемого топлива за одну подачу, в пре­делах до 3/4 от подачи при номинальной мощности двигателя, пусковое чис­ло оборотов уменьшается. Чем выше степень сжатия и чем меньше пропусков воздуха через зазор в замке поршневых колец, тем больше будет температура воздуха в конце сжатия и, следовательно, тем меньше требуется пусковое число оборотов.

В двигателях с большим отношением поверхности камеры сжатия к ее объему (разделенные камеры сжатия) для обеспечения надежного пуска двигателя в ход приходится значительно повышать степень сжатия. Чем ниже минимальная температура самовоспламенения топлива, тем меньше может быть пусковое число оборотов двигателя.

Опытные данные показывают, что самовоспламенение топлива в ци­линдре холодного дизеля (температура окружающей среды не ниже + 8° С) наступает при достижении средней скорости поршня 0,5—1,2м/сек. Чем меньше габариты двигателя, тем больше надо иметь пусковую среднюю скорость поршня. При более низкой температуре окружающей среды не­обходимо перед пуском подогревать двигатель.

Имея опытные данные минимальной средней скорости поршня с m min , можно определить минимальное число оборотов, до которого следует раз­гонять двигатель в период пуска:

В практике получили применение следующие способы пуска двигателей в ход: ручной, ручной с помощью инерционного стартера, инерционным стар­тером с раскручиванием его массы от электромотора, электростартером, сжатым воздухом и специальным карбюраторным двигателем. Для пуска судовых дизелей применяются: ручной способ для двигателей мощностью 10—30 э. л. с. (вспомогательные двигатели), электростартерный для быстро­ходных малогабаритных двигателей и главным образом пуск сжатым воз­духом.

Крутящий момент, необходимый для разгона двигателя от ? = 0 до ? = ? min , определяется из равенства работы инерционных сил приращению кинетической энергии механизма двигателя:

Крутящий момент сил сопротивления воды вращению гребного винта равен

Среднее значение крутящего момента, необходимого для разгона дви­гателя до числа оборотов вала его п min , будет равно

Среднее индикаторное давление двигателя за период его работы на сжатом пусковом воздухе определяется:

Как указывалось ранее, пуск в ход быстроходных малогабаритных двигателей осуществляется с помощью электростартера.

Электростартер представляет собой электромотор, предназначенный для приведения во вращение коленчатого вала двигателя в период пуска его в ход. Электростартер питается током от аккумуляторной батареи с на­пряжением 12—24 в. Передача вращения от вала якоря электростартера к валу двигателя осуществляется с помощью зубчатой шестерни, закреплен­ной на валу якоря, и зубчатого венца, насаженного на обод маховика дви­гателя.

Шестерня якоря электростартера при включении его в электрическую цепь автоматически, под действием магнитного потока, входит в зацепление с зубчатым венцом маховика. Вслед за первыми вспышками топлива в ци­линдрах двигателя шестерня якоря электростартера автоматически выходит из зацепления.

Передаточное число между шестерней стартера и зубчатым венцом маховика определяется из условия достижения пускового числа оборотов вала двигателя.

Если принять среднее давление механических потерь двигателя в кг на 1 см 2 площади поршня, основываясь на опытных данных, то мощность стартера может быть определена

Из полученной формулы (251) следует, что литровая мощность зависит от p мех и п т i п . По опытным данным, она колеблется в пределах 0,4— 2 л. с./л.

Пуск судовых дизелей сжатым воздухом получил наибольшее примене­ние, как имеющий ряд преимуществ перед другими способами пуска. Ос­новное преимущество этого способа — возможность быстрого, безотказного пуска в ход как быстроходных малогабаритных двигателей, так и тихоход­ных крупных двигателей. Электростартерный пуск тихоходных двигателей с большими габаритами не может быть применим, так как электростартер в этом случае должен иметь большую мощность и соответственно аккумуля­торы должны иметь большую емкость.

Запас сжатого воздуха под начальным давлением 30—50 кГ/cм 2 (чаще 30 кГ/см 2 ) находится в баллонах. Нагнетание сжатого воздуха в баллоны производится компрессором с приводом от главного двигателя или от элект­ромотора.

При открытом клапане баллона сжатый воздух по трубопроводу под­водится к воздухораспределителю и к пусковым клапанам цилиндров. Из распределителя воздух поочередно подводится к пусковым клапанам ци­линдров, открывая их в соответствии с порядком работы.

Сжатый воздух, подведенный к пусковому клапану, в период открытия его поступает в цилиндр двигателя. Поступив в цилиндр, сжатый воздух давит на поршни и тем самым сообщает коленчатому валу двигателя крутя­щий момент, необходимый для разгона его до пусковых оборотов п min . Пусковой клапан многоцилиндровых судовых двигателей открывается при положении поршня обычно за 5° до ВМТ, и впуск воздуха происходит в период последующего такта расширения.

Рабочий цикл четырехтактного двигателя в пусковой период состоит из: такта наполнения цилиндра воздухом, такта сжатия, такта поступления пускового воздуха, его расширения, подачи небольшого количества топлива, (если подача в этот период автоматически не выключается) и такта выпуска

В двухтактном двигателе поступление пускового воздуха происходит за тактом сжатия.

Продолжительность открытия пускового клапана определена из усло­вия непрерывного поступления пускового воздуха в цилиндры двигателя; отсюда следует, что прежде чем закроется пусковой клапан одного цилиндра, должен открыться пусковой клапан другого цилиндра. Таким образом для возможности пуска двигателя при любом положении коленчатого вала не­обходимо иметь не менее шести цилиндров для четырехтактного двигателя с мотылями под углом 120° и не менее четырех цилиндров для двухтактного с мотылями под углом 90°. В первом случае пусковой клапан должен быть открыт в течение поворота мотыля на угол, несколько больший 120°, а во втором — несколько больший 90°.

В период поступления в цилиндры двигателя пускового воздуха подача топлива выключается или производится в небольшом количестве. В против­ном случае в цилиндре двигателя может возникнуть недопустимо высокое давление. По достижении двигателем пускового числа оборотов подача пус­кового воздуха прекращается и включается подача топлива. Если же в пе­риод работы двигателя на пусковом воздухе происходила небольшая подача топлива, то при появлении первых вспышек топлива впуска воздуха не происходит, а увеличивается подача топлива, с тем чтобы двигатель смог работать с устойчивым числом оборотов.

Пусковые клапаны современных двигателей имеют только пневмати­ческий привод. С помощью распределителя пускового воздуха достигается автоматическое открытие и закрытие пусковых клапанов.

Емкость пусковых баллонов, согласно требованиям Регистра СССР, должна обеспечить двенадцать последовательных пусков двигателя, начи­ная с холодного состояния его, без подкачки воздуха. Отсюда объем пуско­вых баллонов должен быть равен

где t — время в мин, необходимое для пополнения израсходованного воз­духа на 12 пусков.

При пуске холодного дизеля в ход и при низкой температуре наружного воздуха самовоспламенение топлива з период пуска может произойти только после подачи в цилиндр нескольких порций (подача за цикл) топли­ва. Такое же явление наблюдается и при пуске в ход двигателя, имеющего значительный износ поршневых колец и стенок цилиндра.

Рабочий цикл при первом самовоспламенении топлива, при пуске ди­зеля с указанными условиями, протекает с высокими максимальным дав­лением и скоростью нарастания давления. Объясняется это следующим. При малом числе оборотов вала двигателя в период пуска, вследствие уве­личившейся утечки топлива в насосе, давление нагнетания топлива резко снижается, а потому тонкость распыла топлива ухудшается. Одновременно давление топлива в нагнетательном трубопроводе при малом числе оборотов имеет значительные колебания, и поэтому в период нагнетания происходят неоднократные посадки и подъемы иглы форсунки. При такой прерывистой подаче топлива процесс распыливания и смесеобразования значительно ухудшается.

Кроме ухудшения процесса смесеобразования в период пуска холодного двигателя, или имеющего значительный износ поршневых колец, или стенок цилиндра, происходит значительный теплоотвод в процессе сжатия воздуха в рабочем цилиндре, а потому температура и давление воздуха в конце сжа­тия имеют низкие значения.

Все это приводит к такому увеличению периода задержки самовоспла­менения, при котором начало процесса сгорания переносится далеко на ли­нию расширения, а следовательно, при низких р и Т не могут возникнуть очаги горения рабочей смеси (произойдут пропуски вспышек в цилиндре). При дальнейшем вращении вала двигателя к впрыскиваемой порции топ­лива прибавляются пары капель топлива, осевших на стенках цилиндра от предыдущих порций, и благодаря этому происходит самовоспламенение и сгорание увеличенного количества топлива (за счет предыдущей подачи).

Протекание указанного процесса сгорания сопровождается скоростью нарастания давления, достигающей значения 15 кГ/см 2 /1° п. к. в., что под­тверждается сильными стуками в цилиндре. На развитие необходимого ми­нимального числа оборотов вала двигателя в период пуска п min влияет также величина угла опережения подачи топлива.

Как показывают опытные данные, для пуска двигателя при более ран­нем опережении подачи топлива требуется разгон его до более высокого числа оборотов п min . При очень малом угле опережения также необходимо более высокое число оборотов п min .

Пусковые качества дизеля также зависят от цетанового числа и испа­ряемости топлива. Чем больше цетановое число, тем меньше период задержки самовоспламенения топлива, а следовательно, тем меньше требуется п min и меньше время пуска двигателя в ход (период раскручивания двигателя).

Состояние изношенности рабочей втулки цилиндра и поршневых колец влияет на процесс пуска дизеля в ход, и в связи с этим следует сказать, что сама скорость изнашивания названных деталей достигает наибольшей вели­чины в пусковой период работы двигателя.

Опытами установлено, что величина износа стенок рабочей втулки ци­линдра дизеля после каждого пуска его в холодном состоянии равна вели­чине износа в плоскости оси вала после 3—5 ч его работы при установившем­ся тепловом режиме с номинальной нагрузкой, а в плоскости, перпендику­лярной оси вала, — после 7—8 ч работы. При этом износ имеет тот же ха­рактер, что и при работе дизеля. Такой весьма значительный износ указан­ных деталей в пусковой период двигателя происходит по причине корроди­рующего воздействия продуктов сгорания и усиленного абразивного воздей­ствия на поршневые кольца при неустановившемся режиме смазки.

Наличие в продуктах сгорания сернистых соединений SO 2 и SO 3 уси­ливает газовую коррозию непосредственным воздействием этих соединений на стенки цилиндра, однако наибольшее воздействие имеет кислотная кор­розия. При работе холодного двигателя пары воды, имеющиеся в продуктах сгорания топлива, конденсируются на стенках цилиндра и выпускного тракта и, соединяясь с сернистыми соединениями, образуют сернистую и серную кислоты.

Читать еще:  Что такое ready start двигатели

Углекислота, имеющаяся в продуктах сгорания, растворяясь в воде, образует угольную кислоту. В целом образовавшиеся кислоты и производят усиленный коррозионный износ стенок цилиндра.

Высокое максимальное давление цикла, которое имеет место в пусковой период работы холодного дизеля, увеличивает удельное давление поршне­вых колец (особенно верхнего кольца) на стенки цилиндра и тем самым уси­ливает износ их, особенно при недостаточной подаче смазки на малых обо­ротах .

Особенности и способы пуска асинхронного двигателя

Схемы пуска двигателей в ход должны предусматривать создание большого пускового момента при небольшом пусковом токе и, следовательно, при небольшом падении напряжения при пуске. При этом может требоваться плавный пуск, повышенный пусковой момент и т. д.

На практике применяются следующие способы пуска:

1. непосредственное присоединение к сети — прямой пуск;

Прямой пуск применяется для двигателей с короткозамкнутым ротором. Для этого они проектируются так, чтобы пусковые токи, протекающие в обмотке статора, не создавали больших механических усилий в обмотках и не приводили к их перегреву. Но при прямом пуске двигателей большой мощности в сети могут возникать недопустимые, более 15%, падения напряжения, что приводит к неустойчивой работе пусковой аппаратуры (дребезжание), подгоранию контактов и практически к невозможности пуска.

2. понижение напряжения при пуске;

Применяется для двигателей средней и большой мощности при ограниченной мощности сети. На обмотку статора подается пониженное напряжение. Напряжение можно регулировать с помощью включения добавочных сопротивлений в цепь статора, автотрансформатора, полупроводникового регулятора напряжения. Также, если при нормальной работе двигателя соединены «треугольником», то при пуске они первоначально соединяются «звездой». При этом пусковые токи уменьшаются в три раза.

Основным недостатком этих методом является снижение пускового момента.

3. включение сопротивления в цепь ротора в двигателях с фазовым ротором.

Пуск двигателя с фазным ротором осуществляется путем включения пускового реостата в цепь ротора. Недостатком данного способа является его относительная сложность и необходимость применения более дорогих двигателей с фазным ротором. В связи с этим двигатели с фазным ротором применяют только при тяжелых условиях пуска, когда необходимо развивать максимально возможный пусковой момент.

32.Какими способами можно регулировать частоту вращения асинхронного двигателя?

Частота вращения асинхронного двигателя

n = n1 (1 – s) = (60f1/p) (1-s)

Из этого выражения видно, что ее можно регулировать, изменяя частотуf1 питающего напряжения, число пар полюсов р и скольжение s. Скольжение при заданных значениях момента на валу Мвн и частоты f1 можно изменять путем включения в цепь обмотки ротора реостата.

Регулирование путем изменения частоты питающего напряжения.Этот способ требует наличия преобразователя частоты, к которому должен быть подключен асинхронный двигатель. Такой способ регулирования частоты вращения ротора асинхронного двигателя является весьма перспективным.

Регулирование путем изменения числа пар полюсов. Этот способ позволяет получить ступенчатое изменение частоты вращения. Для этой цели отдельные катушки 1, 2 и 3, 4, составляющие одну фазу, переключаются так, чтобы изменялось соответствующим образом направление тока в них (например, с последовательного согласного соединения на встречное). При изменении числа полюсов изменяется частота вращения n1 магнитного поля двигателя, а следовательно, и частота вращения n его ротора. В асинхронном двигателе число полюсов ротора должно быть равно числу полюсов статора. В короткозамкнутом роторе это условие выполняется автоматически и при переключении обмотки статора никаких изменений в обмотке ротора выполнять не требуется.

Такой способ регулирования частоты вращения используется только в двигателях с коротко-замкнутым ротором.

Регулирование путем включения в цепь ротора реостата. Это способ регулирования может быть использован только для двигателей с фазным ротором. Он позволяет плавно изменять частоту вращения в широких пределах. Недостатками его являются большие потери энергии в регулировочном реостате, поэтому его используют только при кратковременных режимах работы двигателя (при пуске и пр.).

Изменение направления вращения.Для изменения направления вращения двигателя нужно изменить направление вращения магнитного поля, создаваемого обмотками статора. Это достигается изменением порядка чередования тока в фазах обмотки статора.

33.Что такое скольжение, как оно определяется и какова его роль в работе асинхронного двигателя?

Пусть под действием электромагнитного момента ротор начал вращаться с частотой вращения магнитного поля (n=n). При этом в обмотке ротора ЭДС E2 будет равна нулю. Ток в обмотке ротора I2=0, электромагнитный момент M тоже станет равным нулю. За счёт этого ротор станет вращаться медленнее, в обмотке ротора появится ЭДС, ток. Возникнет электромагнитный момент. Таким образом, в режиме двигателя ротор будет вращаться несинхронно с магнитным полем. Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя – асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора. В отличие от частоты вращения ротора частота вращения магнитного поля не зависит от нагрузки. Для сравнения частоты вращения магнитного поля n и ротора n ввели коэффициент, который назвали скольжением и обозначили буквойS. Скольжение может измеряться в относительных единицах и в процентах.

При пуске в ход асинхронного двигателя n=0,S=1. В режиме идеального холостого хода n=n,S=0. Таким образом, в режиме двигателя скольжение изменяется в пределах:

форматоры бывают однофазные и трехфазные, двух- и многообмоточные.

Рис. 212. Схема включения однофазного трансформатора

Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.

Коэффициент трансформации- Отношение напряжения на зажимах двух обмоток в режиме холостого кода. Коэффициент трансформации является основной характеристикой трансформатора. Он показывает, насколько изменяются основные параметры электрического тока, после того как он проходит через это устройство. Когда коэффициент трансформации больше 1 – трансформатор называется понижающим, если меньше – повышающим.

, , где

· , — входное и выходное напряжения соответственно

· , — число витков первичной и вторичной обмоток

· , — токи в первичной и вторичной цепях трансформатора

35.Какие потери мощности существуют в трансформаторе и как они определяются? Что такое внешняя характеристика трансформатора?

Основными характеристиками трансформатора являются прежде всего напряжение обмоток и передаваемая трансформатором мощность. Передача мощности от одной обмотки к другой происходит электромагнитным путем, при этом часть мощности, поступающей к трансформатору из питающей электрической сети, теряется в трансформаторе. Потерянную часть мощности называют потерями.

При передаче мощности через трансформатор напряжение на вторичных обмотках изменяется при изменении нагрузки за счет падения напряжения в трансформаторе, которое определяется сопротивлением короткого замыкания. Потери мощности в трансформаторе и напряжение короткого замыкания также являются важными характеристиками. Они определяют экономичность работы трасформатора и режим работы электрической сети.

Потери мощности в трансформаторе являются одной из основных характеристик экономичности конструкции трансформатора. Полные нормированные потери состоят из потерь холостого хода (XX) и потерь короткого замыкания (КЗ). При холостом ходе (нагрузка не присоединена), когда ток протекает только по обмотке, присоединенной к источнику питания, а в других обмотках тока нет, мощность, потребляемая от сети, расходуется на создание магнитного потока холостого хода, т.е. на намагничивание магнитопровода, состоящего из листов трансформаторной стали. Поскольку переменный ток изменяет свое направление, то направление магнитного потока также меняется. Это значит, что сталь намагничивается и размагничивается попеременно. При изменении тока от максимума до нуля сталь размагничивается, магнитная индукция уменьшается, но с некоторым запаздыванием, т.е. размагничивание задерживается (при достижении нулевого значения тока индукция не равна нулю точка N). Задерживание в перемагничивании является следствием сопротивления стали переориентировке элементарных магнитов.

При протекании магнитного потока по магнитопроводу возникают потери на вихревые токи. Как известно, магнитный поток индуктирует электродвижущую силу (ЭДС), создающую ток не только в обмотке, находящейся на стержне магнитопровода, но и в самом его металле. Вихревые токи протекают по замкнутому контуру (вихревое движение) в месте стали в направлении, перпендикулярном направлению магнитного потока. Для уменьшения вихревых токов магнитопровод собирают из отдельных изолированных листов стали. При этом чем тоньше лист, тем меньше элементарная ЭДС, меньше созданный ею вихревой ток, т.е. меньше потери мощности от вихревых токов. Эти потери тоже нагревают магнитопровод. Для уменьшения вихревых токов, потерь и нагревов увеличивают электрическое сопротивление стали путем введения в металл присадок.

Внешняя характеристика трансформатора представляет собой зависимость между вторичными током и напряжением при изменении нагрузки, неизменном значении первичного напряжения U1 и заданном коэффициенте мощности cos φ2 во вторичной цепи.

Рис. 6.3. Внешняя характеристика трансформатора

Вторичное напряжение U2 при нагрузке отличается от напряжения холостого хода на величину изменения напряжения, которое зависит от величины нагрузки.

Внешняя характеристика может быть построена как по расчетным данным активного и индуктивного падений напряжения (расчетная внешняя характеристика), так и по опытным данным (внешняя характеристика конкретного трансформатора). Построение внешней характеристики показано на рис. 6.3. По оси ординат откладывается вторичное напряжение U2, а по оси абсцисс — величина нагрузки α (в % или долях от номинальной мощности). Начальная точка внешней характеристики начинается от ординаты, равной U2НОМ, а другой ее конец, против абсциссы α = 1(т. е. при номинальной нагрузке), будет опущен против начала на величину ΔU — изменения напряжения.

Так как изменение напряжения пропорционально нагрузочному току I2 (см. § 6.1), то внешняя характеристика практически представляет прямую линию. На рис. 6.3 построены две внешние характеристики — для cos φ2=1и cos φ2= 0,8.

Положения характеристик зависят от мощности и характера нагрузки трансформатора и при малой мощности они могут поменяться местами (при активной и активно-индуктивной нагрузках).

36.Электроника. Виды электроники. Устройства информационной электроники.

Электро́ника — наука о взаимодействии электронов с электромагнитными полями и методах создания электронных приборов и устройств для преобразования электромагнитной энергии, в основном для передачи, обработки и храненияи нформации.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector