Плавный пуск электродвигателя
Плавный пуск электродвигателя
Плавный пуск предназначен для выполнения запуска и дальнейшего разгона, торможения и остановки высоковольтных электродвигателей синхронного и асинхронного типа, мощностью более 10 кВт, а также для сохранения и повышения их эксплуатационных качеств.
Необходимость плавного пуска
Традиционное использование прямого пуска для электродвигателя высокого напряжения, чревато резкими просадками напряжения в электрической сети.
Так, многократный бросок пускового тока, способствует созданию ударного электромагнитного момента, передаваемого по валу двигателя на редуктор и всю рабочую машину.
В обмотке статора создаются значительные динамические усилия, которые вызывают дефекты в виде смещения листов друг относительно друга, что чревато повреждением изоляции и приводят к капитальному ремонту двигателя.
В результате частых прямых пусков, как следствие, происходят повреждения редукторов и пробой изоляции обмоток.
Достаточно часто происходит обгорание выводов в «борно» (клеммах) электродвигателя и повреждение соединений между катушками обмоток двигателя.
Механические части агрегата быстро изнашиваются. Все эти неисправности заставляют выполнять узлы механизмов с высоким запасом прочности.
Принцип действия и особенности электронного плавного пуска
Действие плавного пуска основано на использовании принципа управления изменением фазового угла открытия тиристоров. Устройство работает с использованием высоковольтных тиристоров, подключенных встречно-параллельно, с током от 350 до 2600А. Каждой фазе соответствует тиристор положительного и отрицательного полупериода.
Тиристоры плавно увеличивают напряжение электродвигателя. Ток в третьей фазе, без управления, равен сумме токов фаз, находящихся под управлением. После разгона двигателя, тиристоры могут управляться, а напряжение подходит к выводам двигателя. Во время работы проводить регулировку напряжения необязательно, выполняется шунтирование тиристоров с помощь байпасных контактов.
Обеспечение обратной связи, предназначенной к управлению пусковым током и для защиты электродвигателя и электроустановки, выполняется трансформаторами тока.
Фазовая отсечка служит для получения величины напряжения наиболее эффективной для питания двигателя во время пуска. Фазовая отсечка настраивается в зависимости от величины напряжения до момента пуска и до расчетного напряжения электрического двигателя при помощи регулировок.
Значение силы тока электрической машины пропорционально напряжению, питающему ее. Этим достигается уменьшение величины пускового тока в зависимости от уменьшения, подаваемого к электродвигателю питающего напряжения.
Момент вращения электродвигателя по отношению к величине напряжения уменьшается пропорционально квадрату напряжения.
Возможности плавного пуска
Для УПП характерно сохранение параметров электрооборудования (напряжение, ток, вращающий момент) в момент пуска в безопасных пределах.
Плавный или безударный пуск исключает высокие ударные пусковые токи, способствует увеличению надежности оборудования. Снятие ограничения на число запусков и остановов электродвигателей высокого напряжения позволяет рационально использовать электрооборудование с учетом тарифа на электроэнергию.
В технологическом плане, плавный пуск дает возможность получить значительный выигрыш. Так, например, УПП используют на месторождениях нефтедобычи, например, на (КНС) кустовых насосных станциях, для запуска двигателей насосных агрегатов, применяемых для закачки воды в пласт. Благодаря отсутствию пусковых ограничений, УПП помогает поддерживать необходимое пластовое давление и позволяет максимально эффективно распределить нагрузки между насосными установками, внутри станции и со смежными КНС. Также плавный пуск используется для запуска асинхронных двигателей на ДНС (дожимная насосная станция), для подачи откачиваемой нефти в основной нефтепровод.
Преимущества плавного пуска
1. Плавный пуск рекомендован для запуска высоковольтных синхронных и некоторых типов асинхронных электродвигателей большой мощности. Это машины, которые обладают значительными статическими нагрузками и большой инерционной скоростью останова.
2. УПП обеспечивает частотный запуск двигателя до синхронной скорости с определенными значениями пускового времени и с ограничением тока с уровнем менее 1,5 от номинального тока электродвигателя.
3. Плавный пуск осуществляет синхронизацию и включение электродвигателя в сеть.
4. Наличие в УПП «умного» блока управления дает возможность осуществлять автоматическую работу оборудования. Цифровые каналы связи передают сведения о настоящем состоянии агрегата на высший уровень системы управления технологией рабочего процесса.
В управлении применяются микроконтроллерные системы. Для современных систем плавного пуска характерно адаптивное управление ускорением. Чтобы это было возможно, системы автоматики производят анализ предыдущих процессов запуска и остановки агрегата, после чего УПП автоматически адаптирует процесс к избранному профилю, соответственно назначению.
Важно знать и учитывать необходимое время пуска так называемый коэффициент трудности пуска. Чем больше время пуска, тем выше нагрев тиристоров, которые рассчитаны на длительный режим работы при нормальном пуске, определенной температуре окружающего воздуха (до 40оС) и заданном количестве включений.
Диапазон использования УПП.
В рамках использования устройства плавного пуска находятся самые разнообразные функции.
1. Осуществляя пуск и остановку двигателя, используется нелинейный способ, им можно управлять увеличением напряжения, в этом случае кривая напряжения будет зависеть от потребляемой нагрузки.
2. Быстрый останов двигателя осуществляется с помощью постоянного тока, он используется в функции торможения.
3. Максимальный импульсный момент способствует плавному разгону электрического двигателя.
Устройство плавного пуска электродвигателя. Пример применения
Устройство плавного пуска ABB PSR-25-600
Всем привет! Сегодня будет статья, в которой показан реальный пример использования устройства плавного пуска (мягкого пускателя) на практике. Плавный пуск электродвигателя установлен мною на реальном устройстве, приводятся фото и схемы.
Что это за устройство, я ранее подробно рассказывал в статье про мягкий пускатель. Напоминаю, что мягкий пускатель и устройство плавного пуска суть одно и то же устройство. Названия эти берутся от английского Soft Starter. В статье я буду называть этот блок и так, и эдак, привыкайте). Информации по устройствам плавного пуска в интернете достаточно, рекомендую также почитать здесь.
Моё мнение по пуску асинхронных двигателей, подтвержденное многолетними наблюдениями и практикой. При мощности двигателя более 4 кВт стоит подумать, чтобы обеспечить плавный разгон двигателя. Это нужно при тяжелой, инерционной нагрузке, которая как раз и подключается на вал такого двигателя. Если двигатель используется с редуктором, то ситуация полегче.
Простейший и самый дешевый вариант плавного пуска – вариант с включением двигателя через схему “Звезда-Треугольник”. Более “плавные” и гибкие варианты – устройство плавного пуска и преобразователь частоты (в народе – “частотник”). Есть ещё древний способ, который уже почти не применяется – двухскоростные двигатели.
Кстати, верный признак того, что двигатель питается через частотник – хорошо слышимый писк с частотой около 8 кГц, особенно на низких оборотах.
Я уже использовал устройство плавного пуска от Schneider Electric, был такой положительный опыт в моей деятельности. Тогда нужно было плавно включать/выключать длинный круговой конвейер с заготовками (двигатель 2,2 кВт с редуктором). Жаль, что фотоаппарата тогда не было под рукой. Но в этот раз всё рассмотрим очень детально!
Зачем понадобился плавный пуск двигателя
Итак, проблема — на котельной есть насосы подпитки котла водой. Всего два насоса, и включаются они по команде от системы слежения за уровнем воды в котле. Одновременно может работать только один насос, выбор насоса осуществляет оператор котельной путем переключения водяных кранов и электрических переключателей.
Насосы приводятся в действие обычными асинхронными двигателями. Асинхронные двигатели 7,5 кВт включаются через обычные контакторы (магнитными пускателями). А поскольку мощность большая, то пуск очень жесткий. Каждый раз при пуске возникает ощутимый гидроудар. Портятся и сами двигатели, и насосы, и гидросистема. Иногда такое ощущение, что трубы и краны сейчас разлетятся вдребезги.
Кроме того, когда котёл остывший, и в него резко подается горячая вода (более 95 °С), то происходят неприятные явления, напоминающие взрывообразное бурление. Бывает и наоборот, воду с температурой 100 °С можно назвать холодной – когда в котле находится сухой пар с температурой почти 200 °С. В этом случае тоже происходят вредные гидроудары.
Всего на котельной два идентичных котла, но во втором установлены частотники на насосы. Котлы (точнее, парогенераторы) вырабатывают пар с температурой более 115 °С и давлением до 14 кгс/см2.
Жаль, что конструкцией котла в электросхеме не предусмотрено было плавное включение двигателей насоса. Хотя котлы итальянские, на этом было решено сэкономить…
Повторюсь, что для плавного включения асинхронных двигателей мы имеем на выбор такие варианты:
В данном случае необходимо было выбрать тот вариант, при котором бы было минимальное вмешательство в рабочую схему управления котлом.
Дело в том, что любые изменения в работе котла должны быть обязательно согласованы с производителем котла (либо сертифицированной организацией) и с надзорной организацией. Поэтому изменения должны быть внесены незаметно и без лишнего шума. Хотя, в систему безопасности я не вмешиваюсь, поэтому тут не так строго.
Мои постоянные читатели знают, что теперь, после сдачи экзаменов в Ростехнадзоре, я имею полное право выполнять работы по КИПиА в котельной.
Выбор устройства плавного пуска
Для начала посмотрим на шильдик двигателя:
Двигатель насоса, который подключается к схеме плавного пуска
Мощность двигателя – 7,5 кВт, обмотки соединены в схему “треугольник”, номинальный потребляемый при этом ток – 14,7А.
Вот как выглядела система пуска (“жёсткая”):
Система прямого пуска двигателей насосов
Напоминаю, что у нас два двигателя, и запускаются они контакторами 07КМ1 и 07КМ2. Контакторы снабжены блоками дополнительных контактов – для индикации и контроля включения.
В качестве альтернативы было выбрано устройство плавного пуска ABB PSR-25-600. Его максимальный ток – 25 Ампер, так что запас у нас хороший. Особенно, если учесть, что работать придётся в тяжелых условиях – количество пусков/стопов, высокая температура. Фото – в начале статьи.
Вот наклейка на софтстартере с параметрами:
Soft Starter ABB PSR-25-600 – параметры
- FLA – Full Load Amps – значение силы тока при полной нагрузке – почти 25А,
- Uc – рабочее напряжение,
- Us – напряжение цепи управления.
Установка УПП
Примерил для начала:
Пробная установка блока плавного пуска
По высоте подходит один в один, по ширине тоже, только длина чуть больше, но место есть.
Теперь вопрос по цепям управления. Контакторы в исходной схеме включались напряжением 24 VAC, а наши АББ управляются напряжением минимум 100 VAC. Налицо необходимость промежуточного реле либо изменения напряжения питания цепи управления.
Однако, на официальном сайте ABB я нашёл схему, где показано, что это устройство способно работать и при 24 VAC. Попытал счастья – не получилось, не запускается…
Что же, ставим промежуточное реле, которое приводит напряжение к нужному уровню:
Пример монтажа системы плавного пуска электродвигателей
Вот с другого ракурса:
Пример монтажа системы плавного пуска электродвигателей
Вот и всё. Промежуточные реле обозвал 07КМ11 и 07КМ21. Кстати, они также нужны и для дополнительных цепей. Через них включаются индикаторы, и сухие контакты для внешнего устройства (пока не используются, в старой схеме – оранжевые провода).
Когда хотел управление использовать напрямую, без реле (24 VAC), планировал индикаторы включения пустить через контакты Com – Run, которые теперь остались неиспользованные.
Схемы плавного пуска
Вот исходная схема.
Схема жесткого пуска двигателей, через контакторы (исходная)
А вот как нехитро я изменил схему:
Схема с плавным пуском двигателей на софтстартерах
По настройкам – коротко. Тут три регулировки – время разгона, время замедления, и начальное напряжение.
Можно было бы использовать одно устройство плавного пуска, и контакторы выбора двигателя (переключать одно устройство на два двигателя). Но это усложнит и сильно изменит схему, и понизит надежность. Что для такого стратегического объекта, как котельная, очень важно.
Осциллограммы напряжения
Орешек знанья твёрд, но всё же
мы не привыкли отступать!
Нам расколоть его поможет
киножурнал «Хочу всё знать!»
Собрать схему отверткой всякий может. А для тех, кто хочет увидеть напряжение и понять, какие реальные процессы происходят, без осциллографа не обойтись. Публикую осциллограммы на выходе 2Т1 устройства плавного пуска.
Двигатель выключен. Чистый синус.
Не правда ли, логическая нестыковка – двигатель выключен, а напряжение на нём есть?! Это особенность некоторых устройств мягкого пуска. Неприятная и опасная. Да, на двигателе есть напряжение 220В, даже когда он стоит.
Дело в том, что управление происходит только по двум фазам, а третья (L3 – T3) подключена к двигателю напрямую. А так как тока нет, то на всех выходах устройства действует напряжение фазы L3, которое проходит через обмотки двигателя. Та же ерунда бывает и в трехфазных твердотельных реле, вот моя статья.
Будьте осторожны! При обслуживании двигателя, подключенного к устройству мягкого пуска, отключайте вводные автоматы, и проверяйте отсутствие напряжения!
Запуск. Тиристоры режут фазу нещадно.
Поскольку нагрузка индуктивная, то синусоида не только режется на куски, но и сильно искажается.
Помеха прёт, и это надо учитывать – возможны сбои в работе контроллеров и другой слаботочки. Чтобы это влияние уменьшить, надо разносить и экранировать цепи, устанавливать дроссели на входе, и др.
Двигатель почти включен. Около 90% от энергии синуса.
Фото сделано да пару секунд до того, как включился внутренний контактор (байпас), который подал полное напряжение на двигатель.
Видео про работу и настройку УПП ABB
Фото корпуса
Ещё небольшой бонус – несколько фото внешнего вида устройства плавного пуска ABB PSR-25-600.
ABB PSR-25-600 – вид снизу
Опция – разъем и крепления для подключения вентилятора охлаждения, в случае больших нагрузок
ABB PSR-25-600 – входные силовые клеммы и клеммы питания и управления.
Крепёж на ДИН-рейку. Надежный и качественный, как и вся продукция ABB.
Пока всё, вопросы и критика в комментариях по плавному пуску электродвигателей приветствуются!
Скачать инструкции и другие файлы по софтстартерам и двигателям
Если тема интересует более глубоко, рекомендую ознакомиться с литературой, приведенной на странице Скачать.
Вот одна из книг, приведенных там:
• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений. Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 1894 раз./
Инструкции и описания софтстартеров различных фирм – известных и бюджетных.
• Устройства плавного пуска PSR, PSS, PST / Устройства плавного пуска ABB PSR, PSS, PST. Принципы работы, параметры, схемы включения, pdf, 430.55 kB, скачан: 264 раз./
• PRS2_softstarter_user manual_rus / Prostar PRS2_softstarter_usermanual_rus. Бюджетные модели. Полное описание софтстартеров, pdf, 2.42 MB, скачан: 182 раз./
• Siemens SoftStarter 3RW44 manual / Siemens SoftStarter 3RW44 — подробное руководство по софтстартерам Сименс, pdf, 1.37 MB, скачан: 170 раз./
• Soft Starter VTdriveFWI-SS3 manual rus / Soft Starter VTdrive FWI-SS3 manual на русском, pdf, 2 MB, скачан: 259 раз./
• Устройства плавного пуска / Устройства плавного пуска. Подробное описание принципов действия, примеров установки и параметров моделей софтстартеров ABB, pdf, 6.19 MB, скачан: 210 раз./
Ещё пособие по двигателям:
• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1496 раз./
На сегодня всё, задавайте вопросы в комментариях!
Устройство плавного пуска: назначение и принцип действия
- Зачем асинхронному двигателю УПП
- Принцип действия устройства плавного пуска
- Механическое регулирование пусковых характеристик
- Электрические устройства для плавного пуска электродвигателей
- Управление электрическими стартсофтерами
Устройство плавного пуска электродвигателя (сокращенно УПП) – это механизм, используемый для сдерживания роста пусковых характеристик. Он делает мягкими процессы запуска и остановки мотора, защищая его от перегрева и рывков, увеличивает срок эксплуатации. Применяется только для асинхронных двигателей.
Зачем асинхронному двигателю УПП
При пуске двигателя в ход напрямую в одно мгновение крутящий момент достигает 150-200% от номинального значения. В это же время образуются пусковые токи, которые превышают номинальный в 5, а то и больше раз. Повышенные во время запуска мотора характеристики становится причиной проблем:
- Повреждение изоляции обмоток и прекращение работы вследствие перегрева.
- Выход из строя кинематической цепи провода из-за обрыва транспортерных лент, механических рывков или гидравлических ударов.
- Тяжелый пуск, препятствующий его завершению.
Именно эти проблемы вызывают у электрического двигателя необходимость в устройстве плавного пуска. Благодаря ему мотор разгоняется плавно, без рывков и ударов. Пусковые токи снижаются. Поэтому удовлетворительное состояние изоляции будет держаться еще долго.
А как понять, что пуск тяжелый, и двигатель нужно оборудовать УПП? Для этого познакомьтесь с описанием трех случаев этого явления:
- Пуск слишком тяжелый для используемого источника питания. От сети нужен ток, который она может выработать только при «работе на износ» или не может выдать такое значение вообще. При попытке запуска на входе системы вырубаются автоматы, лампочки отключаются. Некоторые контакторы и реле переключения отключаются, а генератор питания прекращает работу. В этом случае УПП поможет, если питающая сеть сможет обеспечить 250% от номинального значения тока вместо 500-800%, которые были ей не под силу. Если же сеть не даст даже 250%, то смысла в установке устройства плавного пуска нет.
- Двигатель не запускается напрямую (не начинает крутиться или не разгоняется до нужной скорости, вызывая срабатывание защитной системы). УПП не поможет, но можно попробовать исправить ситуацию с помощью преобразователя частоты.
- Запуск отличный, но на входе отключается автомат еще до того, как устанавливается номинальная частота. УПП может помочь, но не обязательно. Чем ближе частота вращения к номинальному значению в момент срабатывания автомата, тем больше шансов на успех.
Продвинутые устройства плавного пуска для асинхронных двигателей выполняют дополнительные функции:
- Защита от короткого замыкания при пуске в ход;
- Предотвращение обрыва фазы;
- Исключение повторного незапланированного включения;
- Защиты от превышения номинальных нагрузок.
Использовать такие устройства можно не только для смягчения запуска, но и для плавной остановки мотора. График ниже показывается зависимость скорости вращения двигателя от времени при прямом пуске и с использованием стартсофтера (второе название УПП).
Дополнительный бонус обладателям УПП: можно будет подобрать менее мощный источник бесперебойного питания, если в нем есть необходимость.
Принцип действия устройства плавного пуска
- Механические;
- Электрические.
Рассмотрим принцип действия каждого из видов УПП.
Механическое регулирование пусковых характеристик
Для плавного пуска электродвигателя можно использовать способ механического сдерживания нарастающей скорости вращения. Для этого используют устройства, механически регулируя вращение вала. такие как блокираторы магнитного действия, тормозные колодки, жидкостные муфты и противовесы с дробью.
Принцип действия у всех этих способов один — сдерживание оборотов вала электродвигателя при пуске.
Электрические устройства для плавного пуска электродвигателей
Принцип действия электрических УПП заключается в ограничении подаваемого на электродвигатель напряжения, роль ограничителей как правило выполняют соединенные тиристоры, схема подключения выглядит вот так:.
Чтобы лучше понять, как работает стартсофтер, нужно подробнее изучить запуск. Теоретически это процесс преобразования энергии из электрической в кинетическую. При этом сопротивление двигателя от малого значения, характерного для не вращающегося двигателя, увеличивается до большого, когда уже достигнута номинальная скорость. И по закону Ома(I=U/R) в начальный момент ток максимален.
Формула же энергии имеет вид: E=P*t=U*I*t. А поскольку в начале запуска ток максимален, то энергия должна передаваться очень быстро. Если же своими руками подключить электродвигатель к сети через УПП, то на входе в устройство будет работать вторая формула. Энергия будет подаваться очень быстро, но выходить будет медленно. Это достигается путем ограничения напряжения, контролирующего рост пускового тока. А поскольку в обеих формулах ток имеет одинаковую величину, видно, что чем меньше сила тока, тем больше времени потребуется на разгон. Но разгон при этом будет плавный.
Важно! Несмотря на необходимость в снижении пусковых токов, устанавливать их на слишком низких значениях нельзя. Иначе двигатель не сможет разогнаться. Обычно достаточно снизить ток до 250% от номинального (при прямом пуске он составляет 500-800%).
Управление электрическими стартсофтерами
Различают два вида электрических устройств, смягчающих пусковой процесс:
- С амплитудным управлением;
- С фазовым управлением.
Работа амплитудного УПП базируется на постепенном увеличении напряжения на клеммах мотора до максимальной величины. Такие устройства помогают запускать электродвигатели в холостом режиме или с небольшой нагрузкой.
Фазовые стартсофтеры регулируют частотные характеристики фазного тока без снижения напряжения. Это позволяет сохранить высокую мощность мотора, запускать который можно даже с большой нагрузкой. Установить плавное нарастание вращательной частоты можно даже в рабочем режиме. Это важная функция, благодаря которой можно менять скорость вала, не теряя мощность.
Оборудовать электродвигатель устройством плавного пуска или нет – ваше личное дело, если только он не завершает работу на полпути до разгона. Но имейте в виду, что за рубежом запрещено пускать в ход моторы мощностью более 15000 Ватт без стартсофтера. Попытка сэкономить на УПП может привести к преждевременному износу механизма. Если уж не хочется сильно тратиться, то просто установите устройство своими руками, но приобретите его обязательно.
Пуск асинхронного двигателя
Пусковые свойства двигателей.
При пуске ротор двигателя, преодолевая момент нагрузки и момент инерции, разгоняется от частоты вращения п = 0 до п . Скольжение при этом меняется от sп = 1 до s. При пуске должны выполняться два основных требования: вращающий момент должен бить больше момента сопротивления (Мвр>Мс) и пусковой ток Iп должен быть по возможности небольшим.
В зависимости от конструкции ротора (короткозамкнутый или фазный), мощности двигателя, характера нагрузки возможны различные способы пуска: прямой пуск, пуск с использованием дополнительных сопротивлений, пуск при пониженном напряжении и др. Ниже различные способы пуска рассматриваются более подробно.
Прямой пуск.
Пуск двигателя непосредственным включением на напряжение сети обмотки статора называется прямым пуском. Схема прямого пуска приведена на рис. 3.22. При включении рубильника в первый момент скольжение s = l, а приведенный ток в роторе и равный ему ток статора
, (3.37)
максимальны (см.п.3.19 при s=1). По мере разгона ротора скольжение уменьшается и поэтому в конце пуска ток значительно меньше, чем в первый момент. В серийных двигателях при прямом пуске кратность пускового тока kI = IП / I1НОМ = ( 5,…,7), причем большее значение относится к двигателям большей мощности.
Значение пускового момента находится из (3.23) при s = 1:
,(3.38)
Из рис. 3.18 видно, что пусковой момент близок к номинальному и значительно меньше критического. Для серийных двигателей кратность пускового момента МП/ МНОМ = (1.0,…,1.8).
Приведенные данные показывают, что при прямом пуске в сети, питающей двигатель, возникает бросок тока, который может вызвать настолько значительное падение напряжение, что другие двигатели, питающиеся от этой сети, могут остановиться.
С другой стороны, из-за небольшого пускового момента при пуске под нагрузкой двигатель может не преодолеть момент сопротивления на валу и не тронется с места. В силу указанных недостатков прямой пуск можно применять только у двигателей малой и средней мощности (примерно до 50 кВт).
Пуск двигателей с улучшенными пусковыми свойствами.
Улучшение пусковых свойств асинхронных двигателей достигается использованием эффекта вытеснения тока в роторе за счет специальной конструкции беличьей клетки. Эффект вытеснения тока состоит в следующем: потокосцепление и индуктивное сопротивление X2 проводников в пазу ротора тем выше, чем ближе ко дну паза они расположены (рис.3.23). Также X2 прямо пропорционально частоте тока ротора.
Следовательно, при пуске двигателя, когда s=1 и f2 = f1 = 50 Гц , индуктивное сопротивление X2 = max и под влиянием этого ток вытесняется в наружный слой паза. Плотность тока j по координате h распределяется по кривой, показанной на рис.3.24. В результате ток в основном проходит по наружному сечению проводника, т.е. по значительно меньшему сечению стержня, и, следовательно, активное сопротивление обмотки ротора R2 намного больше, чем при нормальной работе. За счет этого уменьшается пусковой ток и увеличивается пусковой момент МП (см. (3.37), (3.38) ).
По мере разгона двигателя скольжение и частота тока ротора падает и к концу пуска достигает 1 – 4 Гц. При такой частоте индуктивное сопротивление мало и ток распределяется равномерно по всему сечению проводника. При сильно выраженном эффекте вытеснения тока становится возможным прямой пуск при меньших бросках тока и больших пусковых моментах.
К двигателям с улучшенными пусковыми свойствами относятся двигатели, имеющие роторы с глубоким пазом, с двойной беличьей клеткой и некоторые другие.
Двигатели с глубокими пазами.
Как показано на рис.3.25, паз ротора выполнен в виде узкой щели, глубина которой примерно в 10 раз больше, чем ее ширина. В эти пазы-щели укладывается обмотка в виде узких медных полос. Распределение магнитного потока показывает, что индуктивность и индуктивное сопротивление в нижней части проводника значительно больше, чем в верхней части.
Поэтому при пуске ток вытесняется в верхнюю часть стержня и активное сопротивление значительно увеличивается. По мере разгона двигателя скольжение уменьшается, и плотность тока по сечению становится почти одинаковой.
В целях увеличения эффекта вытеснения тока глубокие пазы выполняются не только в виде щели, но и трапецеидальной формы. В этом случае глубина паза несколько меньше, чем при прямоугольной форме.
Двигатели с двойной клеткой.
В таких двигателях обмотки ротора выполняются в виде двух клеток (рис.3.26): во внешних пазах 1 размещается обмотка из латунных проводников, во внутренних 2 – обмотка из медных проводников.
Таким образом, внешняя обмотка имеет большее активное сопротивление, чем внутренняя. При пуске внешняя обмотка сцепляется с очень слабым магнитным потоком, а внутренняя – сравнительно сильным полем. В результате ток вытесняется во внешнюю клетку, а во внутренней тока почти нет.
По мере разгона двигателя ток из внешней клетки переходит во внутреннюю и при s =sНОМ протекает в основном по внутренней клетке. Ток во внешней клетке при этом сравнительно небольшой.
Результирующий пусковой момент, складывающийся из моментов от двух клеток, значительно больше, чем у двигателей нормальной конструкции, и несколько больше, чем у двигателей с глубоким пазом. Однако следует иметь в виду, что стоимость двигателей с двойной клеткой ротора выше.
Пуск переключением обмотки статора.
Если при нормальной работе двигателя фазы статора соединены в треугольник, то, как показано на рис.3.27, при пуске первоначально они соединяются в звезду.
Для этого сначала включается выключатель Q, а затем переключатель S ставится в нижнее положение Пуск. В таком положении концы фаз Х, Y, Z соединены между собой, т.е. фазы соединены звездой. При этом напряжение на фазе в √3 раз меньше линейного.
В результате линейный ток при пуске в 3 раза меньше, чем при соединении треугольником. При разгоне ротора в конце пуска переключатель S переводится в верхнее положение и, как видно из рис. 3.27, фазы статора пересоединяются в треугольник.
Недостатком этого способа является то, что пусковой момент также уменьшается в 3 раза, так как момент пропорционален квадрату фазного напряжения, которое в √3 раз меньше при соединении фаз звездой. Поэтому такой способ применим при небольшом нагрузочном моменте и только для двигателей, нормально работающих при соединении обмоток статора в треугольник.
Пуск при включении добавочных резисторов в цепь статора.(рис. 3.28)
Перед пуском выключатель (пускатель) находится в разомкнутом состоянии и замыкается выключатель Q1.
При этом в цепь статора включены добавочные резисторы RДОБ. В результате обмотка статора питается пониженным напряжением U1n = U1НОМ – InRДОБ. После разгона двигателя замыкается выключатель Q2 и обмотка статора включается на номинальное напряжение U1НОМ. Подбором RДОБ можно ограничить пусковой ток до допустимого.
Следует иметь в виду, что момент при пуске, пропорциональный U 2 1П, будет меньше и составляет (U1П / U1НОМ) 2 номинального. Важно отметить, что при этом способе пуска значительны потери в сопротивлении RДОБ (RДОБI 2 1n). Можно вместо резисторов RДОБ включить катушки с индуктивным сопротивлением ХДОБ, близким к RДОБ.
Применение катушек позволяет уменьшить потери в пусковом сопротивлении.
Автотрансформаторный пуск.
Кроме указанных способов можно применить так называемый автотрансформаторный пуск.
Соответствующая схема показана на рис.3.29.
Перед пуском переключатель S устанавливается в положение 1, а затем включается автотрансформатор и статор питается пониженным напряжением U1П. Двигатель разгоняется при пониженном напряжении и в конце разгона переключатель S переводится в положение 2 и статор питается номинальным напряжением U1ном.
Если коэффициент трансформации понижающего трансформатора n, тогда ток I на его входе будет в n раз меньше. Кроме того, пусковой ток будет также в n раз меньше, т.е. ток при пуске в сети будет в n 2 раз меньше, чем при непосредственном пуске.
Этот способ, хотя и лучше рассмотренных в п.3.14.7, но значительно дороже.
Пуск двигателя с фазным ротором.
Пуск двигателя с фазным ротором осуществляется путем включения пускового реостата в цепь ротора, как это показано на рис.3.30.
Начала фаз обмоток ротора присоединяются к контактным кольцам и через щетки подключаются к пусковому реостату с сопротивлением Rp.
Приведенное к обмотке статора сопротивление пускового реостата Rp рассчитывается так, чтобы пусковой момент был максимальный, т.е. равен критическому. Так как при пуске скольжение sП = 1, то sП = 1 = sК , равенство МП = М Пmaх = МК будет обеспечено. Тогда
.
Пуск двигателя происходит по кривой, показанной на рис.3.31. В момент пуска рабочая точка на механической характеристике находится в положении а, а при разгоне двигателя она перемещается по кривой 1, соответствующей полностью включенному реостату.
При моменте, соответствующем точке е , включается первая ступень реостата и момент скачком увеличивается до точки b – рабочая точка двигателя переходит на кривую 2; в момент времени, соответствующей точке d, выключается вторая ступень реостата, рабочая точка скачком переходит в точку с и двигатель выходит на естественную характеристику 3 и затем в точку f. Реостат закорачивается, обмотка ротора замыкается накоротко, а щетки отводятся от колец.
Таким образом, фазный ротор позволяет пускать в ход асинхронные двигатели большой мощности при ограниченном пусковом токе. Однако этот способ пуска связан со значительными потерями в пусковом реостате.
Кроме того, двигатель с фазным ротором дороже двигателя с короткозамкнутым ротором. Поэтому двигатель с фазным ротором применяется лишь при больших мощностях и высоких требованиях к приводу.