Sw-motors.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловой двигатель

Тепловой двигатель

Теплово́й дви́гатель — устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. (Возможно использование изменения не только объёма, но и формы рабочего тела, как это делается в твёрдотельных двигателях, где в качестве рабочего тела используется вещество в твёрдой фазе.) Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.

Содержание

История

Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι ?) веке н. эры в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени (например, тогда ещё не был изобретён подшипник).

Теория

Работа, совершаемая двигателем, равна:

, где:

  • — количество теплоты, полученное от нагревателя,
  • — количество теплоты, отданное охладителю.

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя() и холодильника():

Типы тепловых двигателей

Двигатель Стирлинга

Дви́гатель Сти́рлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Поршневой двигатель внутреннего сгорания

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2- и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5. Первый двигатель внутреннего сгорания сконструирован Э. Ленуаром в 1860. В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит за четыре хода поршня, за четыре такта. Поэтому такой двигатель и называется четырёхтактным. Цикл двигателя состоит из следующих четырёх тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск.

Роторный (турбинный) двигатель внешнего сгорания

Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия. Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту не приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще. Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

Роторный (турбинный) двигатель внутреннего сгорания

Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

Реактивные и ракетные двигатели

Твёрдотельные двигатели

(источник журнал “Техника молодёжи“)== == Здесь в качестве рабочего тела используется твёрдое тело. Здесь изменяется не объём рабочего тела, а его форма. Позволяет использовать рекордно малый перепад температур.

КПД двигателя внутреннего сгорания – познаем эффективность в сравнении

Среди множества характеристик различных механизмов в автомобиле решающее значение имеет КПД двигателя внутреннего сгорания. Для того чтобы выяснить суть этого понятия, необходимо точно знать, что представляет собой классический двигатель внутреннего сгорания.

КПД двигателя внутреннего сгорания – что это такое?

В первую очередь, мотор преобразует тепловую энергию, возникающую при сгорании топлива, в определенное количество механической работы. В отличие от паровых машин, эти двигатели более легкие и компактные. Они гораздо экономичнее и потребляют строго определенное жидкое и газообразное топливо. Таким образом, КПД современных двигателей рассчитывается на основании их технических характеристик и прочих показателей.

Читать еще:  Что такое впускной тракт двигателя

КПД (коэффициент полезного действия) представляет собой отношение фактически передаваемой мощности на вал двигателя к мощности, получаемой поршнем за счет действия газов. Если провести сравнение КПД двигателей различной мощности, то можно установить, что это значение для каждого из них имеет свои особенности.

Эффективный КПД двигателя зависит от различных механических потерь на разных стадиях работы. На потери влияет движение отдельных частей мотора и возникающее при этом трение. Это поршни, поршневые кольца и различные подшипники. Эти детали вызывают наибольшую величину потерь, составляющие примерно 65 % от их общего количества. Кроме того, потери возникают от действия таких механизмов, как насосы, магнето и прочие, которые могут дойти до 18 %. Незначительную часть потерь составляют сопротивления, возникающие в топливной системе во время процесса впуска и выпуска.

Больше всего КПД снижается из-за тепловых потерь. Силовая установка прогревает все элементы системы, включая охлаждающую жидкость, радиатор охлаждения и отопителя, вместе с этим теряется тепло. Часть теряется вместе с выхлопными газами. В среднем на тепловые потери приходится до 35% от КПД, а на топливной эффективности ещё 25%. Ещё около 20% занимают механические потери, т.е. на элементы, создающие трение (поршни, кольца и т. д.). Снизить трение помогают качественные моторные масла, но полностью исключить этот фактор невозможно.

Учитывая низкий КПД двигателя можно представить потери более наглядно, например, на количестве топлива. При среднем расходе топлива 10 литров на сто километров пробега на прохождение этого участка уходит лишь 2-3 литра топлива, остальное потери. У дизеля потери меньше, как и к ДВС с газобаллонным оборудованием. Если вопрос высокого КПД двигателя принципиален, то есть на варианты с коэффициентом 90%, но это электромобили и авто с двигателем гибридного типа. Как правило, их стоимость несколько выше и из-за специфики эксплуатации (нужна регулярная подзарядка и ограничен запах хода) такие машины в нашей стране пока редкость.

Сравнение КПД двигателей – бензин и дизель

Если сравнивать между собой КПД бензинового и дизельного двигателя, то следует отметить, что первый из них недостаточно эффективен и преобразует в полезное действие всего 25-30 % произведенной энергии. Например, КПД стандартного дизеля достигает 40 %, а применение турбонаддува и промежуточного охлаждения повышает это значение до 50 %.

Оба двигателя, несмотря на схожесть конструкции, имеют различные виды смесеобразования. Поэтому поршни карбюраторного мотора работают при более высоких температурах, требующих качественного охлаждения. Из-за этого тепловая энергия, которая могла бы превратиться в механическую, рассеивается без всякой пользы, понижая общее значение КПД.

Тем не менее, для того чтобы повысить КПД бензинового двигателя, принимаются определенные меры. Например, на один цилиндр могут устанавливаться два впускных и выпускных клапана, вместо конструкции, когда размещается один впускной и один выпускной клапан. Кроме того, в некоторых двигателях на каждую свечу устанавливается отдельная катушка зажигания. Управление дроссельной заслонкой во многих случаях осуществляется с помощью электропривода, а не обыкновенным тросиком.

КПД дизельного двигателя – заметная эффективность

Дизель является одной из разновидностей двигателей внутреннего сгорания, в котором воспламенение рабочей смеси производится в результате сжатия. Поэтому давление воздуха в цилиндре намного выше, чем у бензинового двигателя. Сравнивая КПД дизельного двигателя с КПД других конструкций, можно отметить его наиболее высокую эффективность.

При наличии низких оборотов и большого рабочего объема показатель КПД может превысить 50 %.

Следует обратить внимание на сравнительно небольшой расход дизельного топлива и низкое содержание вредных веществ в отработанных газах. Таким образом, значение коэффициента полезного действия двигателя внутреннего сгорания полностью зависит от его типа и конструкции. Во многих автомобилях низкий КПД перекрывается различными усовершенствованиями, позволяющими улучшить общие технические характеристики.

Принцип действия и КПД тепловых двигателей. Физика. 10 класс.

Принцип действия и КПД тепловых двигателей. Физика. 10 класс.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе
Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями
Комментарии преподавателя

Прин­цип дей­ствия теп­ло­во­го дви­га­те­ля

1. Тепловые двигатели

Темой про­шло­го урока был пер­вый закон тер­мо­ди­на­ми­ки, ко­то­рый за­да­вал связь между неко­то­рым ко­ли­че­ством теп­ло­ты, ко­то­рое было пе­ре­да­но пор­ции газа, и ра­бо­той, со­вер­ша­е­мой этим газом при рас­ши­ре­нии. И те­перь при­шло время ска­зать, что эта фор­му­ла вы­зы­ва­ет ин­те­рес не толь­ко при неких тео­ре­ти­че­ских рас­чё­тах, но и во вполне прак­ти­че­ском при­ме­не­нии, ведь ра­бо­та газа есть не что иное как по­лез­ная ра­бо­та, какую мы из­вле­ка­ем при ис­поль­зо­ва­нии теп­ло­вых дви­га­те­лей.

Опре­де­ле­ние. Теп­ло­вой дви­га­тель – устрой­ство, в ко­то­ром внут­рен­няя энер­гия топ­ли­ва пре­об­ра­зу­ет­ся в ме­ха­ни­че­скую ра­бо­ту (рис. 1).

Рис. 1. Раз­лич­ные при­ме­ры теп­ло­вых дви­га­те­лей (Ис­точ­ник), (Ис­точ­ник)

Как видно из ри­сун­ка, теп­ло­вы­ми дви­га­те­ля­ми яв­ля­ют­ся любые устрой­ства, ра­бо­та­ю­щие по вы­ше­ука­зан­но­му прин­ци­пу, и они ва­рьи­ру­ют­ся от неве­ро­ят­но про­стых до очень слож­ных по кон­струк­ции.

Все без ис­клю­че­ния теп­ло­вые дви­га­те­ли функ­ци­о­наль­но де­лят­ся на три со­став­ля­ю­щие (см. рис. 2):

  • На­гре­ва­тель
  • Ра­бо­чее тело
  • Хо­ло­диль­ник
Читать еще:  Двигатель 2zr большой расход топлива

Рис. 2. Функ­ци­о­наль­ная схема теп­ло­во­го дви­га­те­ля (Ис­точ­ник)

2. Работа газа в тепловых двигателях

На­гре­ва­те­лем яв­ля­ет­ся про­цесс сго­ра­ния топ­ли­ва, ко­то­рое при сго­ра­нии пе­ре­да­ёт боль­шое ко­ли­че­ство теп­ло­ты газу, на­гре­вая тот до боль­ших тем­пе­ра­тур. Го­ря­чий газ, ко­то­рый яв­ля­ет­ся ра­бо­чим телом, вслед­ствие по­вы­ше­ния тем­пе­ра­ту­ры, а сле­до­ва­тель­но, и дав­ле­ния, рас­ши­ря­ет­ся, со­вер­шая ра­бо­ту . Ко­неч­но же, так как все­гда су­ще­ству­ет теп­ло­пе­ре­да­ча с кор­пу­сом дви­га­те­ля, окру­жа­ю­щим воз­ду­хом и т. д., ра­бо­та не будет чис­лен­но рав­нять­ся пе­ре­дан­ной теп­ло­те – часть энер­гии ухо­дит на хо­ло­диль­ник, ко­то­рым, как пра­ви­ло, яв­ля­ет­ся окру­жа­ю­щая среда.

Проще всего можно пред­ста­вить себе про­цесс, про­ис­хо­дя­щий в про­стом ци­лин­дре под по­движ­ным порш­нем (на­при­мер, ци­линдр дви­га­те­ля внут­рен­не­го сго­ра­ния). Есте­ствен­но, чтобы дви­га­тель ра­бо­тал и в нём был смысл, про­цесс дол­жен про­ис­хо­дить цик­ли­че­ски, а не ра­зо­во. То есть после каж­до­го рас­ши­ре­ния газ дол­жен воз­вра­щать­ся в пер­во­на­чаль­ное по­ло­же­ние (рис. 3).

Рис. 3. При­мер цик­ли­че­ской ра­бо­ты теп­ло­во­го дви­га­те­ля (Ис­точ­ник)

Для того чтобы газ воз­вра­щал­ся в на­чаль­ное по­ло­же­ние, над ним необ­хо­ди­мо вы­пол­нить некую ра­бо­ту (ра­бо­та внеш­них сил). А так как ра­бо­та газа равна ра­бо­те над газом с про­ти­во­по­лож­ным зна­ком, для того чтобы за весь цикл газ вы­пол­нил сум­мар­но по­ло­жи­тель­ную ра­бо­ту (иначе в дви­га­те­ле не было бы смыс­ла), необ­хо­ди­мо, чтобы ра­бо­та внеш­них сил была мень­ше ра­бо­ты газа. То есть гра­фик цик­ли­че­ско­го про­цес­са в ко­ор­ди­на­тах P-V дол­жен иметь вид: за­мкну­тый кон­тур с об­хо­дом по ча­со­вой стрел­ке. При дан­ном усло­вии ра­бо­та газа (на том участ­ке гра­фи­ка, где объём рас­тёт) боль­ше ра­бо­ты над газом (на том участ­ке, где объём умень­ша­ет­ся) (рис. 4).

Рис. 4. При­мер гра­фи­ка про­цес­са, про­те­ка­ю­ще­го в теп­ло­вом дви­га­те­ле

Раз мы го­во­рим о неко­ем ме­ха­низ­ме, обя­за­тель­но нужно ска­зать, каков его КПД.

Паровая турбина

В современной технике широко применяют другой тип теплового двигателя. В нём пар или нагретый до высокой температуры газ вращает вал двигателя без помощи поршня, шатуна и коленчатого вала. Такие двигатели называют турбинами.

Ротор паровой турбины

Схема устройства простейшей паровой турбины приведена на рисунке 28. На вал 5 насажен диск 4, по ободу которого закреплены лопатки 2. Около лопаток расположены трубы — сопла 1, в которые поступает пар 3 из котла. Струи пара, вырывающиеся из сопел, оказывают значительное давление на лопатки и приводят диск турбины в быстрое вращательное движение.

Схема паровой турбины

В современных турбинах применяют не один, а несколько дисков, насаженных на общий вал. Пар последовательно проходит через лопатки всех дисков, отдавая каждому из них часть своей энергии.

На электростанциях с турбиной соединён генератор электрического тока. Частота вращения вала турбин достигает 3000 оборотов в минуту, что является очень удобным для приведения в движение генераторов электрического тока.

В нашей стране строят паровые турбины мощностью от нескольких киловатт до 1 200 000 кВт.

Применяют турбины на тепловых электростанциях и на кораблях.

Постепенно находят всё более широкое применение газовые турбины, в которых вместо пара используются продукты сгорания газа.

КПД теплового двигателя

Любой тепловой двигатель превращает в механическую энергию только незначительную часть энергии, которая выделяется топливом. Большая часть энергии топлива не используется полезно, а теряется в окружающем пространстве.

Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника. Газ или пар, который является рабочим телом, получает от нагревателя некоторое количество теплоты. Рабочее тело, нагреваясь, расширяется и совершает работу за счёт своей внутренней энергии. Часть энергии передаётся атмосфере — холодильнику — вместе с отработанным паром или выхлопными газами.

Очень важно знать, какую часть энергии, выделяемой топливом, тепловой двигатель превращает в полезную работу. Чем больше эта часть энергии, тем двигатель экономичнее.

Для характеристики экономичности различных двигателей введено понятие коэффициента полезного действия двигателя — КПД.

Отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.

Коэффициент полезного действия обозначают η (греч. буква «эта»).

КПД теплового двигателя определяют по формуле

где Ап — полезная работа, Q1 — количество теплоты, полученное от нагревателя, Q2 — количество теплоты, отданное холодильнику, Q1 — Q2 — количество теплоты, которое пошло на совершение работы. КПД выражается в процентах.

Например, двигатель из всей энергии, выделившейся при сгорании топлива, расходует на совершение полезной работы только одну четвёртую часть. Тогда коэффициент полезного действия двигателя равен ¼, или 25% .

КПД двигателя обычно выражают в процентах. Он всегда меньше единицы, т. е. меньше 100% . Например, КПД двигателей внутреннего сгорания 20—40%, паровых турбин — немногим выше 30%.

Домашняя работа

Задание 1. Ответить на вопросы.

  1. Какие тепловые двигатели называют паровыми турбинами?
  2. В чём отличие в устройстве турбин и поршневых машин?
  3. Из каких частей состоит паровая турбина и как она работает?
  4. Почему в тепловых двигателях только часть энергии топлива превращается в механическую энергию?
  5. Что называют КПД теплового двигателя?
  6. Почему КПД двигателя не может быть не только больше 100%, но и равен 100%?
Читать еще:  Двигатель 6м61 технические характеристики

Задание 2. Решить задачи.
☝ При равномерном перемещении груза массой 30 кг по наклонной плоскости была приложена сила 80 Н. Вычисли КПД плоскости, если ее длина 3,6 м, а высота – 60 см.
☝ Какова длина наклонной плоскости, если при перемещении груза массой 1 кг была приложена сила 5 Н? Высота наклонной плоскости 0,2 м, а КПД 80%.
☝ Груз массой 300 кг подняли с помощью рычага на высоту 0,5 м. При этом к длинному плечу рычага была приложена сила 500 Н, а точка приложения силы опустилась на 4 м. Вычислите КПД рычага.
☝ Какая сила была приложена к длинному плечу рычага с КПД 40%, если груз массой 100 кг был поднят на высоту 10 см, а длинное плечо рычага опустилось на 50 см?

ИНТЕРЕСНО

1. Мощные механизмы приводят в движение не паровыми поршневыми машинами, а паровыми турбинами. Ведь поршневые машины при той же мощности имеют большие размеры и вес и меньший кпд. В ряде случаев это технически неудобно и экономически невыгодно.

2. Чтобы поднять КПД парового двигателя стенки парового котла лучше делать из железа или меди.
Эти металлы улучшат теплопроводность котла и этим поднимут его КПД. Кстати, слой накипи ухудшает теплопроводность котла и приводит к появлению на нем трещин и, в конце концов, к порче котла, поэтому-то так необходимо очищать котел от накипи.

К занятию прикреплен файл «Изобретение и распространение паровых турбин.». Вы можете скачать файл в любое удобное для вас время.

КПД теплового двигателя

Тепловым называется двигатель, выполняющий работу за счет источника тепловой энергии.

Тепловая энергия (Qнагревателя) от источника передается двигателю, при этом часть полученной энергии двигатель тратит на выполнение работы W, неизрасходованная энергия (Qхолодильника) отправляется в холодильник, роль которого может выполнять, например окружающий воздух. Тепловой двигатель может работать только в том случае, если температура холодильника меньше температуры нагревателя.

Коэффициент полезного действия (КПД) теплового двигателя можно рассчитать по формуле: КПД = W/Qнг.

КПД=1 (100%) в том случае, если вся тепловая энергия превращается в работу. КПД=0 (0%) в том случае, если никакая тепловая энергия не превращается в работу.

КПД реального теплового двигателя лежит в промежутке от 0 до 1, чем выше КПД, тем эффективнее двигатель.

Согласно закону сохранения энергии (первое начало термодинамики), тепловая энергия, попадающая в двигатель, равняется сумме работы, которую выполняет двигатель, и тепловой энергии, отданной в холодильник:

Допустим, двигатель, имеющий КПД=0,8, выполняет работу в 100 Дж. Сколько тепловой энергии он использует, и сколько отводит в холодильник?

Решить поставленную задачу не составляет труда.

Принцип Карно

Любой инженер, занимающийся разработкой теплового двигателя, стремится разработать двигатель с максимально возможным КПД. Идеальный вариант, когда КПД=1, в таком случае вся, полученная двигателем, тепловая энергия использовалась бы на работу, при этом в холодильник не поступало бы ничего. Однако, в реальной жизни осуществить подобное невозможно, поскольку в реальном двигателе некоторая часть энергии расходуется на неизбежные потери в трущихся механизмах.

Если бы инженерам удалось изобрести двигатель, в котором не было бы потерь, то система бы всегда возвращалась в начальное состояние — такой процесс называется обратимым. Все реальные двигатели тратят часть тепловой энергии на преодоление трения, поэтому процессы называются необратимыми.

Одним из первых, кто в 19 веке занялся изучением данной проблемы, был Санди Карно, сформулировавший следующий принцип (принцип Карно): ни один необратимый двигатель не может обладать абсолютным КПД, как обратимый, при этом, все обратимые двигатели, которые работают в промежутке между одинаковыми максимальными и одинаковыми минимальными температурами, имеют один и тот же КПД.

Если на практике изобрести обратимый двигатель невозможно, то никто не мешает изобрасти его «на бумаге». Так и поступил Карно, сформулировавший свои принципы для идеального двигателя (двигателя Карно). Двигатель Карно получает тепловую энергию от нагревателя, который имеет постоянную температуру Tнагревателя. Отработанная тепловая энергия уходит в холодильник с постоянной температурой Тхолодильника.

Поскольку температуры нагревателя и холодильника постоянны, отношение подаваемой и отводимой тепловой энергии будет равно отношению их температур (в Кельвинах):

Учитывая третье начало термодинамики, которое гласит, что температуру абсолютного нуля (Т=0К) достичь невозможно, можно сказать, что невозможно разработать тепловой двигатель с КПД=1, поскольку всегда Tх>0.

КПД теплового двигателя будет тем больше, чем выше температура нагревателя, и ниже температура холодильника.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector