Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы и область применения сельсинной пары

Принцип работы и область применения сельсинной пары.

Сельсин представляет собой миниатюрную электрическую машину, в обычном исполнении сходную с синхронным генератором или двигателем.

Конструктивное исполнение их может быть различным. Преимущественное применение получили сельсины с однофазной первичной и трехфазной вторичной обмотками Однофазная первичная и трехфазная вторичная обмотки могут располагаться соответственно как на роторе, так и на статоре. Чаще всею ротор сельсина имеет одну обмотку, а статор — три обмотки, оси которых сдвинуты на 120° одна относительно другой.

Сельсины всегда работают попарно. Один из сельсинов называется сельсин-датчик (СД), связанный с входным валом, другой — сельсин-приемник (СП), связанный с выходным валом. Сельсин-датчик преобразует угол поворот одною механизма в электрический сигнал, который пе­редается по проводам (на любое расстояние) и воспринимается сельсином-приемником.

Сельсин-приемник преобразует поступивший сигнал в угловое перемещение второго механизма, одинаковое с первым. В автоматических системах сельсины используются в двух основных режимах: индикаторном и трансформаторном.

Индикаторный режим Схема включения сельсинов в индикаторном режиме приведена на рис. 38.

Роторы обоих сельсинов получают питание от одного источника переменного тока, статорные обмотки сельсинов соединены в звезду и между собой.

Однофазный переменный ток создает в магнитной цепи каждого сельсина пульсирующий магнитный поток, который наводит во вторичных обмотках ЭДС. При одинаковых положениях роторов датчика и приемника ЭДС в каждой фазе сельсина-датчика уравновешивается соответствующей ЭДС сельсина-приемника и во вторичных цепях ток отсутствует. При повороте ротора датчика ЭДС в соответствующих обмотках окажутся различными по величине, так как роторы занимают уже неодинаковое положение по отношению к осям обмоток статора. Под действием разности ЭДС во вторичных цепях сельсинов потекут уравнительные токи.

Рис 38. Схема включения сельсинов в индикаторном режиме

Взаимодействие этих токов с магнитным потоком создает на валах сельсина-датчика и сельсина-приемника синхронизирующий момент, стремящийся свести угол рассогласования к нулю. Однако этот момент мал и практически достаточен лишь для перемещения стрелок или других указательных устройств, поэтому индикаторный режим в системах автоматического регулирования применяется редко.

Угол рассогласования служит показателем системы синхронной передачи. В зависимости от величины 9 сельсины делятся на четыре класса (табл.1).

Класс точностиМаксимально возможная средняя ошибка, град
±0,75
±1,5
±2,5
±5,0

Максимально возможная средняя ошибка, определяющая класс точности сельсина, есть полусумма максимальных ошибок, получаемых при вращении датчика в двух направлениях:

где и — абсолютные значения максимальных ошибок, полученных при вращении датчика в обе стороны.

Сельсинная пара рассматривается как безинерционное устройство. Точность обычных сельсинов, как правило, не превышает десятых долей градуса. Главной причиной возникающих погрешностей являются дефекты изготовления: электрическая и магнитная асимметрия, неточная центровка, эллиптичность ротора и т.д.

Трансформаторный резким. Принципиальная схема включения сельсинов в трансформаторном режиме приведена на рис. 39.

Отличие данной схемы от индикаторной заключается в том, что однофазная обмотка сельсина-приемника не подключается к источнику напряжения, а является выходной и присоединяется в следящих схемах к входу усилителя, а ротор сельсина-приемника заторможен. Такая схема включения сельсинов применяется для передачи движения на исполнительные устройства, нагруженные большими моментами сопротивления движению.

Рис 39. Схема включения сельсинов в трансформаторном режиме

Выходное напряжение будет равно нулю при разности углов поворота 90°. так как результирующий поток в этом случае не будет пересекать витков обмотки ротора-приемника. Это положение и принимается за нулевое. Любое рассогласование сопровождается появлением напряжения на выходе, причем величина выходного напряжения в распространенных конструкциях является функцией синуса угла рассогласования:

где К = 1 В/град.

Для достаточно малых углов можно полагать:

Важно отметить, что эти выражения отражают не только зависимость эффективного значения (модуля) выходного напряжения от угла рассогласования, но и зависимость фазы этого напряжения от знака рассогласования, при изменении знака рассогласования фаза выходного напряжения меняется на 180°.

Трансформаторный режим работы сельсинов широко применяется в следящих системах, предназначенных для осуществления синхронного вращения двух валов, механически между собой несвязанных. Один из валов является входным (например, вал стрелкового прицела) и обычно требует для своего перемещения небольших усилий, другой — выходным (например, вал, связанный с самолетной пушкой), и. как правило, для его перемещения необходимы значительные усилия.

Сельсины и вращающиеся трансформаторы как датчики угла и рассогласования

В автоматизированном электроприводе сельсины и вращающиеся трансформаторы используются как датчики угла и рассогласования. Датчик угла преобразует угловую координату в напряжение, которое определяет сигнал обратной связи по углу перемещения объекта или сигнал управления в задающих устройствах. Датчик угла рассогласования образуется двумя датчиками угла, один из которых является командным, а другой – исполнительным. Задание на движение системы может выполняться с помощью датчика угла рассогласования, угловой координатой которого является угол поворота командной оси. Разность сигналов между командной и исполнительной осью используется как сигнал управления системой.

Сельсин представляет собой маломощную машину переменного тока с однофазной обмоткой возбуждения и трехфазной обмоткой синхронизации. Конструктивно выделяются контактные и бесконтактные сельсины. Основное исполнение первых – обмотка возбуждения расположена на роторе, а обмотка синхронизации – на статоре. Этим достигается уменьшение числа контактных колец до двух и исключаются контакты на синхронизирующей связи. Бесконтактные сельсины реализуются двумя способами. При первом способе благодаря специальной конструкции магнитопровода ротора неподвижная кольцевая обмотка возбуждения создает в роторе поток, поворачивающийся вместе с ротором. При втором – обмотка ротора получает питание от вращающейся совместно с ротором вторичной обмотки кольцевого трансформатора возбуждения с неподвижной первичной обмоткой.

Рисунок 38 – Координаты (а) и схема (б) сельсина

В схемах датчиков угла входная координата сельсина – угол поворота его ротора q, а выходная координата – амплитуда Uвых..m или фаза j выходного напряжения (рис.4) по отношению к опорному напряжению.

Читать еще:  Все схемы двигателей для нло

В амплитудном режиме Uвых..m = f(q) обмотка возбуждения получает питание от сети переменного тока. Тогда напряжение обмотки возбуждения Uв равно по отношению к амплитудному Uв..m:

. (38)

Магнитный поток, действующий по осевой линии обмотки возбуждения, наводит фазные ЭДС «е» в обмотке статора (рисунок 38б):

,

,

,

где kт – коэффициент трансформации между фазной статорной и роторной обмотками при их соосном положении.

Характеристика управления сельсина в амплитудном режиме после преобразований и предварительном повороте сельсина на 90 0 имеет вид:

, (39)

где Eу – ЭДС управления.

В режиме фазовращателя характеристика управления имеет вид: j = q.

Основные характеристики сельсина как датчика и приемника:

; ; ; ; , (40)

где Мст – статический вращающий момент сельсина; mуд – удельный синхронизирующий момент; mтр – момент трения; mр – реактивный момент сельсина вследствие магнитной и электрической асимметрии сельсинов датчика и приемника; qст – статическая ошибка; А – добротность сельсина.

При выборе параметров сельсинов важными факторами являются напряжение возбуждения (до 110 в), частота питающей сети, класс точности. Максимальная погрешность сельсинов-приемников составляет: в классе точности 1 — ± 0,75; в классе точности 2 — ±0,75…±1,5; в классе точности 3 — ±1,5 …±2,5. Для сельсинов-датчиков в этих же классах точности: ±25; ±25…±0,5; ±0,5…±1,0.

Рисунок 39 – Схема (а) и векторная диаграмма (б) СКВТ

Для увеличения точности углового датчика на базе сельсина разработаны синусно-косинусные вращающиеся трансформаторы (СКВТ). На статоре и роторе СКВТ расположены по две обмотки. На неявнополюсном статоре – обмотка возбуждения по продольной оси и квадратурная обмотка управления по поперечной оси. На роторе – синусная и косинусная обмотки. Обмотка возбуждения питается от однофазной сети и организует пульсирующий магнитный поток, пронизывающий обмотки ротора.

В амплитудном режиме для косинусной обмотки, расположенной по оси d, и синусной – по оси q имеем:

, , (41)

где Em – амплитуда ЭДС.

В режиме фазовращателя обмотки статора получают питание от источника двухфазного напряжения. Образующееся при этом круговое поле наводит ЭДС в обмотке ротора, фаза которой линейно изменяется при повороте ротора. Характеристика управления в режиме фазовращателя имеет вид: j = q ¢ , где q ¢ = q + p/4. Максимальные угловые погрешности СКВТ от нулевого до третьего классов точности составляют от 4 до 22 минут.

Два сельсина или СКВТ образуют датчик угла рассогласования. При разных схемах соединения сельсинов или СКВТ можно получить индикаторный, трансформаторный или дифференциальный режим датчиков. Область использования – следящие системы.

В индикаторном режиме характеристика управления определяется разностью углов датчика и приемника с учетом статической ошибки сельсинов или СКВТ:

Индексы «дт» и «пр» соответствуют датчику и приемнику.

В трансформаторном режиме:

, (42)

где kдп – коэффициент, зависящий от параметров обмоток датчика и приемника; Uу – напряжение управления, полученное на выходе обмотки возбуждения сельсина-приемника или на квадратурной обмотке приемника СКВТ.

В дифференциальном режиме используются два датчика и один приемник. Приемник отрабатывает разность углов датчиков с учетом знака угла и организует угловую координату для функции управления:

где qпр.д – угол поворота дифференциального приемника; qсд1 и qсд2 – углы поворота первого и второго датчиков.

Датчики скорости

В автоматизированном электроприводе датчики скорости используются для преобразования скорости двигателя или скорости движения рабочего органа механизма в электрический сигнал для организации обратной связи по скорости. В качестве аналоговых датчиков скорости применяются тахогенераторы постоянного и переменного тока.

Тахогенератор постоянного тока представляет собой микромашину постоянного тока с независимым возбуждением или постоянными магнитами, входной координатой которого является угловая скорость w, а выходной – напряжение Uвых, выделяемое на сопротивлении нагрузки.

Рисунок 40 – Схема (а) и характеристика управления (б) тахогенератора постоянного тока

, (44)

где Ф – магнитный поток возбуждения; k – конструктивная постоянная; kтг – передаточный коэффициент тахогенератора; Rтг – сопротивление якорной обмотки и щеточного контакта тахогенератора; Rн – сопротивление нагрузки.

Характеристика управления нелинейная в области малых и больших скоростей. В первом случае для уменьшения нелинейности используют металлизированные щетки, во втором – ограничивают скорость сверху и увеличивают сопротивление нагрузки. Тахогенераторы высокой точности выполняются с полым беспазным якорем и дополнительно к выходу генератора подключают конденсатор, выполняющий роль фильтра «С». Передаточная функция при этом имеет вид

, (45)

где Тф – постоянная времени фильтра.

, (46)

где С – емкость фильтра.

Тахогенераторы переменного тока выполнены на базе асинхронной двухфазной машины (рисунок 41).

Рисунок 41 – Тахогенератор переменного тока

На статоре имеются две взаимно перпендикулярные обмотки: обмотка возбуждения, расположенная по оси a, и выходная обмотка управления, расположенная по оси b. Последняя включена на сопротивление нагрузки тахогенератора. Для уменьшения момента инерции ротор выполняется тонкостенным в виде полого стакана из немагнитного материала. Внутри ротора размещается неподвижный стальной шихтованный сердечник, по которому замыкается магнитный поток.

Амплитудные значение ЭДС и передаточного коэффициента ТГ:

. (47)

Коэффициенты А и В:

, (48) ,

где ; – приведённое к обмотке статора сопротивление ротора; — индуктивное сопротивление намагничивания; Rc и хc – активное и индуктивное сопротивление рассеяния обмотки статора;

ω* = ω/ ωс – относительная скорость ротора; ω – изменяемое значение скорости; ωс – синхронная скорость ротора.

Рисунок 42 – Характеристики управления тахогенератора переменного тока

Асинхронные тахогенераторы имеет достаточно высокую точность. Линейность характеристик определяется погрешностью менее 0,5%. По сравнению с тахогенераторами постоянного тока обладает существенно меньшим передаточным коэффициентом.

Существенными преимуществами в точности по сравнению с аналоговыми имеют цифровые датчики скорости.

Рисунок 43 – Структурная схема цифрового датчика скорости

Структурно в датчике выделяются две части: датчик импульсов ДИ и счетчик импульсов СИ. ДИ является импульсным преобразователем и преобразует угловую скорость вала в импульсы с частотой f, пропорциональной скорости. Задача кодового преобразователя СИ как счетчика импульсов формировать на интервале измерения Т цифровой код Аn выходной величины датчика скорости.

Читать еще:  602 двигатель какие форсунки

Рисунок 44 – Кодовый диск фотоэлектрического датчика импульсов

ДИ выполняется на основе фотоэлектрического кодового диска (рисунке 43) и вырабатывает две серии импульсов, сдвинутых по фазе на 90 0 , которые используются для определения величины и знака угловой скорости. На двух дорожках расположены пропускающие свет щели. Свет от источников ИС1 и ИС2 через щели попадает на фотодиоды BL1 и BL2, которые при этом открыты и пропускают ток. Когда щель выходит из луча света, фотодиоды запирают цепь. При вращении диска с угловой скоростью w фотодиоды дают чередование максимального и минимального сигналов с частотой

, (49)

где Nди – импульсная емкость кодового диска (число импульсов на один оборот диска).

Среднее значение скорости определяется числом импульсов N на периоде измерения T:

. (50)

Точность цифрового датчика увеличивается с увеличением измеряемой скорости и периода измерения.

Исполнительные асинхронные двигатели. Схемы замещения и параметры двухфазных исполнительных асинхронных двигателей. Вращающий момент двухфазного исполнительного асинхронного двигателя. Характеристики исполнительных асинхронных двигателей. Вращающиеся трансформаторы. Универсальные коллекторные двигатели и преобразователи. Синхронные машины общего применения. Синхронные двигатели для систем автоматики , страница 51

(14.12)

Дистанционное управление сравнительно мощными механизмами без дополнительных усилителей можно осуществить по индикаторной схеме (рис. 14.6), если использовать сельсин-двигатель. Последний совмещает в себе функции сельсина-приемника и исполнительного двигателя.

Рис. 14.6. Схема включения сельсина двигателя

Рис, 14.7. Схема конструкции сельсина- двигателя

Конструктивно сельсин-двигатель представляет собой контактный или бесконтактный сельсин. В его увеличенном воздушном зазоре между статором 1 и ротором 3 помещен полый немагнитный стакан 4 (рис. 14.7), являющийся ротором двигателя. Последний соединен с выходным валом 7 сельсина-приемника через понижающий редуктор 5 —9 — 8 — 6.

Обмотка возбуждения сельсина- двигателя подключена через конденсатор С (см. рис. 14.6), щетки и контактные кольца 10 к той же сети, что и обмотка возбуждения датчика. Токи I1I2и I3, протекающие по обмоткам синхронизации 2, расположенным на статоре, создают пульсирующий магнитный поток Фсп, ось которого совпадает по направлению с осью потока Фвд ротора сельсина-датчика и в состоянии рассогласования системы не совпадает с осью потока Фвп ротора сельсина-приемника. При этом МДС и магнитные потоки Фсп и Фвп обмоток синхронизации и возбуждения оказываются смещенными в пространстве и во времени (с помощью конденсатора), вследствие чего в сельсине-двигателе возникает вращающееся поле. Это поле наводит вихревые токи в полом роторе и, взаимодействуя с ними, образует вращающий момент исполнительного двигателя Мид. Под его действием полый ротор вращается со скольжением по направлению поля, поворачивая через понижающий редуктор выходной вал и вместе с ним ротор 3 сельсина приемника до наступления согласованного состояния системы.

Таким образом, вращающий момент, действующий на выходном валу сельсина-двигателя,

где Мсинх— синхронизирующий момент сельсина-приемника; (-переда точное число; η — КПД редуктора.

Обычно iηМид » Мсинх, так как передаточное число составляет не сколько сотен. С помощью сельсина — двигателя, следовательно, происходит усиление синхронизирующего момента (в сотни раз и более в зависимости от iредуктора). Сельсин-двигатель заменяет, таким образом, исполнительный двигатель и сельсин без промежуточного усиления в цепи управления.

§ 14.3. Работа сельсинов в трансформаторном режиме

При трансформаторном режиме от СД к СП передается незначительный по мощности сигнал, который затем усиливается и воздействует на исполнительный двигатель ИД (рис. 14.8). В исходном положении ротора СД ось обмотки 1 совпадает с осью обмотки ОВ, вкоторой наводится максимальная ЭДС. При повороте ротора СД на угол θобмотки 1—3 смещаются. Тогда ЭДС в обмотках СП

(14.13)

Эти ЭДС вызовутсоответствующие токи

(14.14)

Каждый из этих токов в СП создает МДС:

(14.15)

Продольная составляющая результирующей МДС в СП равна сумме проекций МДС отдельных фаз (F1 F2, F3) на ось ОВ (рис. 14.9). Эта МДСсоздает магнитный поток, пронизывающий выходную обмотку СП и наводит в ней ЭДС. Тогда выходное напряжение

(14.16) где k’-коэффициент пропорциональности между Uвых и Fpeз,.

Рис. 14.8. Схема сельсина в трансформаторном режиме работы

Рис. 14,9. К определению результирующей МДС сельсина-приемника

Рис. 14.10. Трансформаторная схема сельсинов с выходным напряжением, пропорциональным sinθ

Рис. 14.11. Трансформаторная схема сельсинов с грубым и точным каналами

Чтобы получить Uвых, пропорциональное sinθ в или при малых углах самому углу θ, за исходное принимают положение выходной обмотки, повернутое на 90° (рис. 14.10): Uвых = k« sin θ . Если θ ≤10°, то Uвых ≈ k»θ.

В зависимости от точности измерения угла рассогласования θ сельсины-трансформаторы делят на три класса:

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309
Читать еще:  Что такое двигатель эко буст

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Вопрос 54. Сельсины. Назначение, виды, устройство и принцип действия. Схема включения сельсинов в индикаторном режиме.

Сельсинами называются электрические микромашины переменного тока, обладающие свойством самосинхронизации. Сельсин имеет однофазную обмотку возбуждения и трехфаз­ную обмотку синхронизации, соединенную звездой. Одна из обмо­ток располагается на роторе, а другая — на статоре.

На обмотки возбуждения сельсинов подано напряжение U1. Ток, проходящий по ним , создает магнитный поток. В свою очередь магнитный поток наводит в обмотках синхронизации ЭДС: Ед – в сельсине-датчике (СД) и Еп в сельсине-приемнике (СП). Если ротор СД занимает такое же положение как и ротор СП, их ЭДС равны, и тока в цепи синхронизации нет. Если ротор СД повернуть на угол а, то одноименные фазы обмоток синхронизации сельсинов окажутся не в одинаковых условиях по отношению к магнитному потоку и их ЭДС не будут одинаковы. В результате возникнет ток синхронизации, вызванный разность ЭДС сельсинов. Он, взаимодействуя с магнитным полем, создаст вращающие моменты на роторе СД, направленные встречно повороту, а на роторе СП – в сторону поворота. Поэтому поворот ротора СД будет сопровождаться синхронным поворотом ротора СП.

Вопрос 55. Асинхронные исполнительные двигатели. Конструкция, принцип действия, особенности работы.

В системах управления, регулирования и контроля широко применяются управляемые электродвигатели небольшой мощности. С помощью этих двигателей осуществляется преобразование электрического сигнала в механическое перемещение — вращение вала. Такие электродвигатели называют исполнительными (ИД).

Характер требований, предъявляемых к исполнительным дви­гателям, определяется спецификой их работы: частые пуски, ре­версы, постоянно изменяющаяся частота вра­щения. Основные требования — отсутствие самохода, т. е. самоторможение при снятии сигнала управления; широкий диапазон регу­лирования частоты вращения; линейность ха­рактеристик; большой пусковой момент; малая мощность управления; быстродействие (малоинерционность).

На статоре асинхронного исполнительного двигателя расположена двухфазная обмотка. Одна из фазных обмоток — об­мотка возбуждения (ОВ) — постоянно вклю­чена в сеть с напряжением U1, а на другую — обмотку управления (ОУ) — напряжение (сиг­нал управления) Uc подается лишь при необходимости включения двигателя.

Асинхронные исполнительные двигатели выпускаются на небольшие мощности и имеют несколько разновидностей в зависимости от выполнения ротора: с обмотки в виде беличьей клетки, с полым немагнитным ротором и полым ферромагнитным ротором.

Ротор с беличьей клеткой имеет обычную конструкцию. Для увеличения сопротивления клетка выполняется из материалов с повышенным удельным сопротивлением (латунь, бронза и др.). Недостатком такого ротора является большой его момент инерции, что снижает быстродействие двигателя.

Значительно меньший момент инерции имеет полый ротор, который выполняется в виде тонкостенного стакана, с одной торцевой стороны насаженного на вал. Немагнитный полый ротор изготовляется из алюминиевого сплава. Толщина его стенок 0,2 — 1 мм. Полый ротор, закрепленный на валу, вращается в зазоре между внешним и внутренним статорами. На внешнем статоре располагаются обмотки, а внутренний статор служит для уменьшения магнитного сопротивления в контуре главного магнитного потока. Как внешний, так и внутренний статор собирается из листов электротехнической стали, покрытых лаком. Воздушным зазором в двигателе с полым немагнитным ротором следует считать зазор между внутренним и внешним статорами. Он относительно велик: 0,5-1,5 мм. Вследствие этого такие двигатели имеют увеличенный ток холостого хода; он составляет 0,8-0,9 номинального тока. Это приводит к увеличению габаритов двигателя и снижению его КПД.

Иногда полый ротор выполняется ферромагнитным (стальным). В этом случае внутренний статор не требуется, так как магнитный поток замыкается по стенкам ротора (толщина его стенок 0,5-3 мм). Конструктивно двигатели с ферромагнитным ротором получаются проще, чем двигатели с полым немагнитным ротором.

У двигателей с ферромагнитным полым ротором активное сопротивление ротора весьма значительно, так как удельное сопротивление стали больше, чем меди и алюминия: кроме того, оно возрастает из-за эффекта вытеснения тока к внешней цилиндрической поверхности ротора. Поэтому КПД таких двигателей еще ниже, чем двигателей с полым немагнитным ротором. Уступают они им и по быстродействию. Иногда для уменьшения активного сопротивления ротора производят его омеднение.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector