Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение слова «двигатель»

Определение слова «двигатель»

Толковый словарь Ефремовой:

двигатель м.
1. Устройство, преобразующее какой-либо вид энергии в механическую работу.
2. перен. Сила, способствующая росту, развитию чего-либо.

Толковый словарь Ушакова:

ДВИ́ГАТЕЛЬ, двигателя, ·муж.
1. Машина, приводящая что-нибудь в движение; механизм, преобразующий какой-нибудь вид энергии в механическую работу (тех.). Двигатель внутреннего сгорания. Электрический двигатель.
2. Сила, способствующая прогрессу в какой-нибудь области (·книж. ). Народное образование является двигателем науки и культуры.

Большой энциклопедический словарь:

ДВИГАТЕЛЬ — энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Подразделяют на первичные и вторичные. Первичные (гидротурбины, двигатель внутреннего сгорания и др.) непосредственно преобразуют энергию природных ресурсов (воды, ядерного топлива и др.) в механическую энергию. Вторичные двигатели (напр., электрические) получают энергию от первичных, от преобразователей и накопителей энергии (напр., солнечных батарей, пружинных механизмов и др.).

Большая советская энциклопедия:

Двигатель
Энергосиловая машина, преобразующая какой-либо вид энергии в механическую работу. В зависимости от типа Д. работа может быть получена от вращаюшегося ротора, возвратно-поступательно движущегося поршня или от реактивного аппарата. Д. приводят в действие рабочие машины, транспортные средства сухопутного, водного, воздушного и космического назначения, производственно-технологической установки, коммунальные и бытовые приборы и т. п. Д., непосредственно преобразующие природные энергетические ресурсы (топливо, 1709 энергию ветра, воды и др.) в механическую энергию, называются первичными (паровые, ветряные, гидравлические и др.). Наибольшую группу среди первичных Д. составляют тепловые (См. Тепловой двигатель) двигатели, использующие химическую энергию топлива или атомную энергию. Д., преобразующис энергию первичных Д. в механическую работу, называются вторичными (электрические, пневматические, некоторые типы гидравлических и др.). Устройства, отдающие накопленную механическую энергию, также относят к Д. (инерционные, пружинные, гиревые механизмы). По назначению Д. разделяют на стационарные, т. е. установленные неподвижно; передвижные, используемые на движущихся рабочих машинах; транспортные, применяемые на различных видах транспортных средств. Первым в истории человечества механическим Д. было водяное колесо, применявшееся для оросительных систем в странах Древнего Востока, в Египте, Китае, Индии. В средние века водяные колёса получили распространение в странах Европы как энергетическая база мануфактурного производства.В этот же период широко применялись ветряные Д. Примерно с 13 в. предпринимались попытки создания вечного двигателя (См. Вечный двигатель) .Переход к машинной технике, начавшийся с середины 18 в., требовал создания Д., не зависящих от местных источников энергии (воды, ветра и т. п.). Первым Д., использующим тепловую энергию топлива, была поршневая пароатмосферная машина прерывного действия, появившаяся в конце 17 — начале 18 вв. (проекты французского физика Д. Папена и английского механика Т. Севери, усовершенствованные в дальнейшем Т. Ньюкоменом в Англии и М. Тривальдом в Швеции). Пароатмосферные Д. значительного распространения не получили. Проект универсального парового Д. был предложен в 1763 русским механиком И. И. Ползуновым, который сдвоил в своей машине цилиндры, получил Д. непрерывного действия. Вполне развитую форму универсальной тепловой Д. получил в 1784 в паровой машине (См. Паровая машина)английского механика Дж. Уатта. Внедрение паровых машин обусловило независимость размещения промышленного производства от природных источников энергии и привело к быстрому развитию промышленности на новой энергитической основе. К 1880 мощность использовавшихся в мировом хозяйстве паровых машин превысила 26 млн. квт ( 35 млн. л. с.)
Во второй половине 19 в. в процессе дальнейшего совершенствования энергетической базы производства были созданы два новых типа тепловых Д.: Паровая турбина и Двигатель внутреннего сгорания (Д. в. с.). В паровых турбинах, получивших распространение после 1884 (патенты английского учёного Ч. Парсонса, шведского изобретателя К. Лаваля), энергия пара преобразуется в энергию вращающегося вала без кривошипно-шатунного механизма. Паровые турбины открыли широкие возможности наращивания мощности единичного агрегата и стали основным Д. крупных электрических станций. С начала 20 в. мощность паровых турбин непрерывно увеличивается, достигнув в 60-х гг. 20 в. 1200 Мвт в одном агрегате.
Первый практически пригодный Д. в. с. был сконструирован в 1860 французским механиком Э. Ленуаром. В 1876 Н. Отто в Германии создал более совершенный 4-тактный газовый Д. По сравнению с паровой машиной Д. в. с., освобожденный от парокотельного агрегата, имел более высокий кпд, был более простым и компактным Д. В 1897 немецкий инженер Р. Дизель, работая над повышением эффективности Д., предложил Д. в. с. с воспламенением от сжатия (см. Дизель). Дальнейшее усовершенствование этого Д. позволило применить в качестве дешёвого топлива нефть, в результате чего Д. в. с. становится экономичным стационарным Д. В то же время Д. в. с. получает широкое распространение на транспорте. В 60-е гг. 20 в. около 80% суммарной мощности всех существующих Д. падает на долю транспортных (см. Автомобильный двигатель, Судовой двигатель). Например, общая мощность автомобильных Д. во всех странах мира превысила 11 млрд. квт (15 млрд. л. с.).
Параллельно с развитием тепловых Д. совершенствовалась конструкция первичных гидравлических Д., особенно гидротурбин (проекты французского инженера Б. Фурнерона, американского А. Пелтона, австрийского В. Каплана и др.). Создание мощных гидротурбин позволило строить гидроэнергетические агрегаты большой мощности (до 600 Мвт) и создавать крупные ГЭС в местностях, где имеются большие реки, водопады и т. п.
Важнейшие сдвиги в развитии энергетической базы промышленного производства были связаны с изобретением и применением двигателей электрических (См. Двигатель электрический). В 1831 английский физик М. Фарадей открыл явление электромагнитной индукции, а в 1834 русский учёный Б. С. Якоби создал первый электрический Д. постоянного тока, пригодный для практических целей. Однако только с 70-х гг. 19 в. Д. постоянного тока получают широкое применение благодаря созданию источников дешёвой электроэнергии (генераторов постоянного тока) и усовершенствованию конструкции Д. электротехниками А. Пачинотти в Италии и З. Граммом в Бельгии. В 1888—89 русский инженер М. О. Доливо-Добровольский создал трёхфазную короткозамкнутую асинхронную электрическую машину (см. Асинхронный электродвигатель). В последующие годы конструкция электрических машин совершенствовалась, были созданы электрические Д. в широком диапазоне мощностей — от долей вт до десятков Мвт. Асинхронные электрические Д. просты в изготовлении, надёжны в эксплуатации, что обусловило их широкое распространение в промышленности. Электропривод в 20 в. стал основным фактором развития энергетики, обусловив постепенное её расчленение на две самостоятельные системы. Первичные Д. (например, турбогенераторы, гидрогенераторы) концентрируются преимущественно на тепловых электростанциях и ГЭС, а электрические Д. образуют параллельную систему конечных приёмников тока, установленных на предприятиях различных отраслей народного хозяйства. Электрические Д. получают также широкое применение в бытовом обслуживании (швейные, стиральные, кухонные машины, холодильники, электробритвы и т. п.).
В первой половине 20 в. были созданы новые типы практически пригодных тепловых Д. — Газовая турбина, Реактивный двигатель, Ядерная силовая установка. Газовые турбины стали основой авиационного двигателестроения (см. Авиационный двигатель), распространяются в локомотивостроении (газотурбовозы), на автомобилях и т. д. Реактивные Д. позволяют реализовать огромные мощности в одном агрегате. Суммарная мощность Д. ракеты, которая в 1961 вывела на орбиту первый космический корабль «Восток», пилотируемый Ю. А. Гагариным, составляла 14 млн. квт (около 20 млн. л. с.), что примерно равно мощности всех электростанций СССР в 1948. Мощность Д. ракеты-носителя «Протон» (1965—68) превышала 45 млн. квт (около 60 млн. л. с.) (см. также Ракетный двигатель).
В промышленности СССР свыше 85% мощности сосредоточено в электрических Д. и установках. В сельском хозяйстве в 1968 на долю Д. в. с. приходилось около 90% общей мощности Д. (см. Тракторный двигатель). Мощность Д. в народном хозяйстве СССР непрерывно растет. В 1967 мощность выпущенных Д. увеличилась по сравнению с 1960 в 1,8 раза и составила по паровым и гидравлическим турбинам 14,7 млн. квт, по дизелям (без автотракторных) 11 млн. квт. В том же 1967 было выпущено свыше 5 млн. электрических Д. суммарной мощностью около 30 млн. квт.
Для обеспечения сложных по режиму условий работы применяется комбинирование Д. различных типов, например паровые турбины устанавливаются совместно с Д. в. с. или газовыми турбинами, разрабатываются проекты комбинированных ракетных Д., в которых сочетаются реактивные и жидкостные ракетные Д. (например, турборакетные или ракетно-прямоточные).
Рост энергосистем, комплексная механизация и автоматизация производства, совершенствование транспорта, расширение космических исследований определяют пути дальнейшего развития Д. Непрерывно увеличивается мощность первичных Д. электрических станций, совершенствуется их конструкция, ведутся работы по созданию установок термоядерного синтеза, Д. внешнего сгорания, новых типов ракетных двигателей (ионных, плазменных, фотонных и др.). Для транспортного двигателестроения важными являются работы по созданию экономичных роторных беспоршневых и роторно-поршневых Д. в. с. (см., например, Ванкеля двигатель), электрических автомобильных и малогабаритных атомных Д. За рубежом (США) ведутся работы по использованию для автомобильного транспорта Д. внешнего сгорания (см. Стирлинга двигатель) в комбинации с электрическим Д. Важнейшим направлением развития энергетической техники во второй половине 20 в. является преобразование химической и тепловой энергии топлива при помощи топливных элементов (См. Топливный элемент) и магнитогидродинамических генераторов (См. Магнитогидродинамический генератор) непосредственно в электрический ток для питания Д. Развитие атомной энергетики, реактивной техники, безмашинных генераторов тока в соединении с Д. большой мощности откроет новые перспективы в развитии производительных сил общества.
Лит. см. при статьях об отдельных видах двигателей.
А. А. Пархоменко.

Толковый словарь Даля:

Толковый словарь Кузнецова:

двигатель
ДВИГАТЕЛЬ -я; м.
1. Машина, превращающая какой-л. вид энергии в механическую энергию. Паровой д. Д. внутреннего сгорания. Реактивный д.
2. чего. Сила, побуждающая к чему-л., содействующая росту, развитию чего-л. Наука — д. прогресса.

Малый академический словарь:

двигатель
-я, м.
1.
Машина, превращающая какой-л. вид энергии в механическую энергию.
Паровой двигатель. Двигатель внутреннего сгорания. Реактивный двигатель. Двигатель механизмов экскаватора. Двигатель бурового станка.
2. чего.
Сила, побуждающая к чему-л., содействующая росту, развитию чего-л.
— Я понимаю науку как могущественный двигатель прогресса. Эртель, Гарденины.

Орфографический словарь Лопатина:

Толковый словарь Ожегова:

ДВИГАТЕЛЬ, я, м.
1. Машина, преобразующая какой-н. вид энергии в механическую работу. Д. внутреннего сгорания. Ракетный д.
2. перен., чего. О силе, содействующей росту, развитию в какой-н. области (высок.) Труд д. прогресса.

Техника. Современная энциклопедия:

двигатель
Энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Двигатели бывают первичные и вторичные. Первичные двигатели преобразуют энергию природных ресурсов (воды, ветра, топлива и др.) в механическую энергию. Такими двигателями являются двигатели внутреннего сгорания, гидравлические турбины, ветродвигатели и др. К вторичным двигателям относятся двигатели, которые получают энергию от первичных двигателей (электрический двигатель) или от преобразователей и накопителей энергии (инерционные двигатели, пружинные механизмы и др.).
Первыми двигателями были водяное колесо и ветровое колесо, или ветряк. Они применялись на мукомольных мельницах, в оросительных системах, в мануфактурном производстве в странах Древнего Востока, Египте, Китае, Индии, позднее и в европейских странах. Изобретённая в 18 в. паровая машина открыла эру тепловых двигателей. Использование в паровых машинах химической энергии топлива обусловило независимость их размещения от природных источников энергии (ветра, воды), что способствовало быстрому развитию промышленности на новой энергетической основе. Во 2-й пол. 19 в. появились два новых тепловых двигателя – паровая турбина и двигатель внутреннего сгорания. Они сразу же получили повсеместное признание. Уже в нач. 20 в. паровые турбины использовались в качестве главных судовых двигателей на военных кораблях, но преимущественное распространение они получили как первичные двигатели для привода электрогенераторов на крупных тепловых электростанциях. Двигатели внутреннего сгорания, в том числе и дизельные, наиболее мобильные и энергонезависимые источники механической энергии. Благодаря этому они стали основным типом двигателя практически на всех видах транспорта, и особенно в автомобилях. В 70-х гг. 19 в. появились первые двигатели электрические, сначала постоянного тока, а с 80-х гг. – переменного. Применение электродвигателей существенно изменило энергетическую базу промышленности, создало условия для механизации и автоматизации производства. В 1-й пол. 20 в. созданы новые типы тепловых двигателей – газовая турбина и реактивный двигатель. Газовые турбины пришли на смену паровым на боевых кораблях, их устанавливают на локомотивах, применяют в авиационных реактивных двигателях, используют в сочетании с паровыми турбинами на парогазотурбинных электростанциях. Реактивные двигатели делятся на две группы: воздушно-реактивные и ракетные двигатели. Воздушно-реактивные двигатели, в т. ч. турбореактивные и турбовинтовые, – основной тип авиационных двигателей, применяются на самолётах и вертолётах гражданской и военной авиации. Благодаря им современные самолёты способны летать со скоростью, в 2–3 раза превышающей скорость звука. Ракетные двигатели на жидком или твёрдом топливе используются практически в ракетах, а также в качестве ускорительных (стартовых) двигателей на боевых самолётах.

Читать еще:  Что такое степень форсированности двигателя

Грамматический словарь Зализняка:

Двигатель, двигатели, двигателя, двигателей, двигателю, двигателям, двигатель, двигатели, двигателем, двигателями, двигателе, двигателях

Энциклопедический словарь Брокгауза и Ефрона:

Вестник международной техники, торговли и промышленности — журнал еженедельный, издававшийся в Москве в 1895—96 гг. Изд.-редактор А. Гиллин.

© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Значения слова двигатель

Словарь Ушакова

дв и гатель, двигателя, муж.

1. Машина, приводящая что-нибудь в движение; механизм, преобразующий какой-нибудь вид энергии в механическую работу (тех.). Двигатель внутреннего сгорания. Электрический двигатель.

2. Сила, способствующая прогрессу в какой-нибудь области (книж.). Народное образование является двигателем науки и культуры.

Словарь Военных Терминов

энергосиловая машина, преобразующая какой-либо вид энергии в механическую работу. Подразделяются на первичные, непосредственно преобразующие в работу энергию природных ресурсов (химическую энергию топлива, энергию течения рек и др.), и вторичные, преобразующие энергию, полученную с помощью первичных Д. (электрические, гидравлические и др. Д.). К Д. относят также устройства, отдающие иакоплеииую механическую энергию (пружинные, гнревые и др.). В военном деле наиболее широко применяются первичные тепловые Д., использующие химическую энергию топлива или ядерную энергию, а в качестве вторичных Д. — электродвигатели. Тепловые Д. подразделяются иа Д. внешнего сгорания (паровые машины, паровые турбины) и Д. внутреннего сгорания.

Автомобильный словарь

Машина, которая преобразует какой-либо вид энергии в механическую работу.

Тезаурус русской деловой лексики

2. ‘переносное значение’

Syn: движущая сила

Энциклопедический словарь

энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Подразделяют на первичные и вторичные. Первичные (гидротурбины, двигатель внутреннего сгорания и др.) непосредственно преобразуют энергию природных ресурсов (воды, ядерного топлива и др.) в механическую энергию. Вторичные двигатели (напр., электрические) получают энергию от первичных, от преобразователей и накопителей энергии (напр., солнечных батарей, пружинных механизмов и др.).

Словарь Ожегова

ДВИГАТЕЛЬ, я, м.

1. Машина, преобразующая какойн. вид энергии в механическую работу. Д. внутреннего сгорания. Ракетный д.

2. перен., чего. О силе, содействующей росту, развитию в какойн. области (высок.) Труд д. прогресса.

Словарь Ефремовой

  1. м.
    1. Устройство, преобразующее какой-л. вид энергии в механическую работу.
    2. перен. Сила, способствующая росту, развитию чего-л.

Энциклопедия Брокгауза и Ефрона

Вестник международной техники, торговли и промышленности — журнал еженедельный, издававшийся в Москве в 1895—96 гг. Издатель-редактор А. Гиллин.

Большая Советская Энциклопедия

энергосиловая машина, преобразующая какой-либо вид энергии в механическую работу. В зависимости от типа Д. работа может быть получена от вращаюшегося ротора, возвратно-поступательно движущегося поршня или от реактивного аппарата. Д. приводят в действие рабочие машины, транспортные средства сухопутного, водного, воздушного и космического назначения, производственно-технологической установки, коммунальные и бытовые приборы и т. п. Д., непосредственно преобразующие природные энергетические ресурсы (топливо, 1709 энергию ветра, воды и др.) в механическую энергию, называются первичными (паровые, ветряные, гидравлические и др.). Наибольшую группу среди первичных Д. составляют тепловые двигатели, использующие химическую энергию топлива или атомную энергию. Д., преобразующис энергию первичных Д. в механическую работу, называются вторичными (электрические, пневматические, некоторые типы гидравлических и др.). Устройства, отдающие накопленную механическую энергию, также относят к Д. (инерционные, пружинные, гиревые механизмы). По назначению Д. разделяют на стационарные, т. е. установленные неподвижно; передвижные, используемые на движущихся рабочих машинах; транспортные, применяемые на различных видах транспортных средств. Первым в истории человечества механическим Д. было водяное колесо, применявшееся для оросительных систем в странах Древнего Востока, в Египте, Китае, Индии. В средние века водяные колёса получили распространение в странах Европы как энергетическая база мануфактурного производства.В этот же период широко применялись ветряные Д. Примерно с 13 в. предпринимались попытки создания вечного двигателя .Переход к машинной технике, начавшийся с середины 18 в., требовал создания Д., не зависящих от местных источников энергии (воды, ветра и т. п.). Первым Д., использующим тепловую энергию топлива, была поршневая пароатмосферная машина прерывного действия, появившаяся в конце 17 ≈ начале 18 вв. (проекты французского физика Д. Папена и английского механика Т. Севери, усовершенствованные в дальнейшем Т. Ньюкоменом в Англии и М. Тривальдом в Швеции). Пароатмосферные Д. значительного распространения не получили. Проект универсального парового Д. был предложен в 1763 русским механиком И. И. Ползуновым , который сдвоил в своей машине цилиндры, получил Д. непрерывного действия. Вполне развитую форму универсальной тепловой Д. получил в 1784 в паровой машине английского механика Дж. Уатта . Внедрение паровых машин обусловило независимость размещения промышленного производства от природных источников энергии и привело к быстрому развитию промышленности на новой энергитической основе. К 1880 мощность использовавшихся в мировом хозяйстве паровых машин превысила 26 млн. квт ( 35 млн. л. с.)

Во второй половине 19 в. в процессе дальнейшего совершенствования энергетической базы производства были созданы два новых типа тепловых Д.: паровая турбина и двигатель внутреннего сгорания (Д. в. с.). В паровых турбинах, получивших распространение после 1884 (патенты английского учёного Ч. Парсонса, шведского изобретателя К. Лаваля), энергия пара преобразуется в энергию вращающегося вала без кривошипно-шатунного механизма. Паровые турбины открыли широкие возможности наращивания мощности единичного агрегата и стали основным Д. крупных электрических станций. С начала 20 в. мощность паровых турбин непрерывно увеличивается, достигнув в 60-х гг. 20 в. 1200 Мвт в одном агрегате.

Первый практически пригодный Д. в. с. был сконструирован в 1860 французским механиком Э. Ленуаром. В 1876 Н. Отто в Германии создал более совершенный 4-тактный газовый Д. По сравнению с паровой машиной Д. в. с., освобожденный от парокотельного агрегата, имел более высокий кпд, был более простым и компактным Д. В 1897 немецкий инженер Р. Дизель , работая над повышением эффективности Д., предложил Д. в. с. с воспламенением от сжатия (см. Дизель ). Дальнейшее усовершенствование этого Д. позволило применить в качестве дешёвого топлива нефть, в результате чего Д. в. с. становится экономичным стационарным Д. В то же время Д. в. с. получает широкое распространение на транспорте. В 60-е гг. 20 в. около 80% суммарной мощности всех существующих Д. падает на долю транспортных (см. Автомобильный двигатель , Судовой двигатель ). Например, общая мощность автомобильных Д. во всех странах мира превысила 11 млрд. квт (15 млрд. л. с.).

Параллельно с развитием тепловых Д. совершенствовалась конструкция первичных гидравлических Д., особенно гидротурбин (проекты французского инженера Б. Фурнерона, американского А. Пелтона, австрийского В. Каплана и др.). Создание мощных гидротурбин позволило строить гидроэнергетические агрегаты большой мощности (до 600 Мвт) и создавать крупные ГЭС в местностях, где имеются большие реки, водопады и т. п.

Важнейшие сдвиги в развитии энергетической базы промышленного производства были связаны с изобретением и применением двигателей электрических . В 1831 английский физик М. Фарадей открыл явление электромагнитной индукции, а в 1834 русский учёный Б. С. Якоби создал первый электрический Д. постоянного тока, пригодный для практических целей. Однако только с 70-х гг. 19 в. Д. постоянного тока получают широкое применение благодаря созданию источников дешёвой электроэнергии (генераторов постоянного тока) и усовершенствованию конструкции Д. электротехниками А. Пачинотти в Италии и З. Граммом в Бельгии. В 1888≈89 русский инженер М. О. Доливо-Добровольский создал трёхфазную короткозамкнутую асинхронную электрическую машину (см. Асинхронный электродвигатель ). В последующие годы конструкция электрических машин совершенствовалась, были созданы электрические Д. в широком диапазоне мощностей ≈ от долей вт до десятков Мвт. Асинхронные электрические Д. просты в изготовлении, надёжны в эксплуатации, что обусловило их широкое распространение в промышленности. Электропривод в 20 в. стал основным фактором развития энергетики, обусловив постепенное её расчленение на две самостоятельные системы. Первичные Д. (например, турбогенераторы, гидрогенераторы) концентрируются преимущественно на тепловых электростанциях и ГЭС, а электрические Д. образуют параллельную систему конечных приёмников тока, установленных на предприятиях различных отраслей народного хозяйства. Электрические Д. получают также широкое применение в бытовом обслуживании (швейные, стиральные, кухонные машины, холодильники, электробритвы и т. п.).

В первой половине 20 в. были созданы новые типы практически пригодных тепловых Д. ≈ газовая турбина , реактивный двигатель , ядерная силовая установка . Газовые турбины стали основой авиационного двигателестроения (см. Авиационный двигатель ), распространяются в локомотивостроении (газотурбовозы), на автомобилях и т. д. Реактивные Д. позволяют реализовать огромные мощности в одном агрегате. Суммарная мощность Д. ракеты, которая в 1961 вывела на орбиту первый космический корабль «Восток», пилотируемый Ю. А. Гагариным , составляла 14 млн. квт (около 20 млн. л. с.), что примерно равно мощности всех электростанций СССР в 1948. Мощность Д. ракеты-носителя «Протон» (1965≈68) превышала 45 млн. квт (около 60 млн. л. с.) (см. также Ракетный двигатель ).

В промышленности СССР свыше 85% мощности сосредоточено в электрических Д. и установках. В сельском хозяйстве в 1968 на долю Д. в. с. приходилось около 90% общей мощности Д. (см. Тракторный двигатель ). Мощность Д. в народном хозяйстве СССР непрерывно растет. В 1967 мощность выпущенных Д. увеличилась по сравнению с 1960 в 1,8 раза и составила по паровым и гидравлическим турбинам 14,7 млн. квт, по дизелям (без автотракторных) 11 млн. квт. В том же 1967 было выпущено свыше 5 млн. электрических Д. суммарной мощностью около 30 млн. квт.

Для обеспечения сложных по режиму условий работы применяется комбинирование Д. различных типов, например паровые турбины устанавливаются совместно с Д. в. с. или газовыми турбинами, разрабатываются проекты комбинированных ракетных Д., в которых сочетаются реактивные и жидкостные ракетные Д. (например, турборакетные или ракетно-прямоточные).

Рост энергосистем, комплексная механизация и автоматизация производства, совершенствование транспорта, расширение космических исследований определяют пути дальнейшего развития Д. Непрерывно увеличивается мощность первичных Д. электрических станций, совершенствуется их конструкция, ведутся работы по созданию установок термоядерного синтеза, Д. внешнего сгорания, новых типов ракетных двигателей (ионных, плазменных, фотонных и др.). Для транспортного двигателестроения важными являются работы по созданию экономичных роторных беспоршневых и роторно-поршневых Д. в. с. (см., например, Ванкеля двигатель ), электрических автомобильных и малогабаритных атомных Д. За рубежом (США) ведутся работы по использованию для автомобильного транспорта Д. внешнего сгорания (см. Стирлинга двигатель) в комбинации с электрическим Д. Важнейшим направлением развития энергетической техники во второй половине 20 в. является преобразование химической и тепловой энергии топлива при помощи топливных элементов и магнитогидродинамических генераторов непосредственно в электрический ток для питания Д. Развитие атомной энергетики, реактивной техники, безмашинных генераторов тока в соединении с Д. большой мощности откроет новые перспективы в развитии производительных сил общества.

Читать еще:  Что такое опроры двигателя

Лит. см. при статьях об отдельных видах двигателей.

Двигатель

Дви́гатель — устройство, преобразующее какой-либо вид энергии в механическую работу. Термин мотор заимствован в первой половине XIX века из немецкого языка [1] (нем. Motor — «двигатель», от лат. mōtor — «приводящий в движение») и преимущественно им называют электрические двигатели и двигатели внутреннего сгорания [2] .

Двигатели подразделяют на первичные и вторичные. К первичным относят непосредственно преобразующие природные энергетические ресурсы в механическую работу, а ко вторичным — преобразующие энергию, выработанную или накопленную другими источниками.

К первичным двигателям (ПД) относятся ветряное колесо, использующее силу ветра, водяное колесо и гиревой механизм — их приводит в действие сила гравитации (падающая вода и сила притяжения), тепловые двигатели — в них химическая энергия топлива или ядерная энергия преобразуются в другие виды энергии. Ко вторичным двигателям (ВД) относятся электрические, пневматические и гидравлические двигатели.

Содержание

  • 1 Первичные двигатели
    • 1.1 Паровые машины
    • 1.2 Двигатель Стирлинга
    • 1.3 Паровая турбина
    • 1.4 Двигатель внутреннего сгорания
  • 2 Вторичные двигатели
    • 2.1 Электродвигатели
    • 2.2 Пневмодвигатели и гидромашины
  • 3 Классификации
    • 3.1 По источнику энергии
    • 3.2 По типам движения
    • 3.3 По устройству
      • 3.3.1 Реактивные двигатели
      • 3.3.2 Ракетные двигатели
    • 3.4 По применению
  • 4 Производство
  • 5 Переносные значения
  • 6 См. также
  • 7 Примечания
  • 8 Ссылки

Первичные двигатели [ | ]

Первыми первичными двигателями стали парус и водяное колесо. Парусом пользуются уже более 7 тысяч лет.

Водяное колесо — норию широко применяли для оросительных систем в странах Древнего мира: Египте, Китае, Индии. Водяные и ветряные колёса широко использовались в Европе в средних веках как основная энергетическая база мануфактурного производства.

Паровые машины [ | ]

В середине XVII века были сделаны первые попытки перехода к машинному производству, потребовавшие создания двигателей, не зависящих от местных источников энергии (воды, ветра и прочего). Первым двигателем, в котором использовалось тепловая энергия химического топлива, стала пароатмосферная машина, изготовленная по проектам французского физика Дени Папена и английского механика Томаса Севери. Эта машина была лишена возможности непосредственно служить механическим приводом, к ней «прилагалось в комплект» водяное мельничное колесо (по-современному говоря, гидротурбина), которое вращала вода, выжимаемая паром из парового котла в резервуар водонапорной башни. Котел то подогревался паром, то охлаждался водой: машина действовала периодически.

В 1763 году русский механик Иван Иванович Ползунов изготовил по собственному проекту стационарную паровую машину непрерывного действия. В ней были сдвоены два цилиндра, поочерёдно заполнявшиеся паром, и также подающими воду на башню, но — постоянно.

К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, названную универсальным паровым двигателем. Уатт с детства работал подручным на машине конструкции Севери. В его задачу входило постоянно переключать краны подачи пара и воды на котел. Эта однообразная работа изрядно надоела изобретателю и побудила изобрести как поршень двойного хода, так и автоматическую клапанную коробку (потом и центробежный предохранитель). В машине был предусмотрен в цилиндре жесткий поршень, по обе стороны которого поочередно подавался пар. Все происходило в автоматическом режиме и непрерывно. Поршень вращал через кривошипно—шатунную систему маховик, обеспечивающий плавность хода. Паровая машина могла теперь стать приводом различных механизмов и перестала быть привязана к водонапорной башне. Элементы, придуманные Уаттом, входили в той или иной форме во все паровые машины. Паровые машины совершенствовали и применяли для решения различных технических задач: привода станков, судов, экипажей для перевозки людей по дорогам, локомотивов на железных дорогах. К 1880 году суммарная мощность всех работавших паровых машин превысила 26 млн кВт (35 млн л. с.).

Двигатель Стирлинга [ | ]

В 1816 шотландец Роберт Стирлинг предложил двигатель внешнего сгорания, называемый сейчас его именем Двигатель Стирлинга. В этом двигателе рабочее тело (воздух или иной газ) заключен в герметичный объём. Здесь осуществлен цикл по типу цикла Севери («до-Уаттовского»), но нагрев рабочего тела и его охлаждение производятся в различных объёмах машины и сквозь стенки рабочих камер. Природа нагревателя и охладителя для цикла не имеют значения, а потому он может работать даже в космосе и от любого источника тепла. КПД созданных сейчас стирлингов невелик. Теоретически он должен раза в 2 превышать КПД для ДВС, а практически — это примерно одинаковые величины. Но у стирлингов есть ряд других преимуществ, которые способствовали развитию исследований в этом направлении.

Паровая турбина [ | ]

Рисунки, изображающие крыльчатое колесо, вращающееся под воздействием потока пара, известны с древних времён. Однако практические конструкции паровой турбины были созданы лишь во второй половине XIX века, благодаря развитию конструкционных материалов, позволивших достичь высоких скоростей вращения.

В 1889 году шведский инженер Карл Густав де Лаваль предложил использовать расширяющееся сопло и быстроходную турбину (до 32000 об/мин), а, независимо от него, ещё в 1884 году англичанин Чарлз Алджернон Парсонс изобрёл первую пригодную для промышленного применения реактивную турбину (более тихоходную), способную вращать судовой винт. Паровые турбины стали применять на морских судах, а с начала XX века на электростанциях. В 1960-х годах их мощность превысила 1000 МВт в одном агрегате.

Двигатель внутреннего сгорания [ | ]

Проект первого двигателя внутреннего сгорания (ДВС) принадлежит известному изобретателю часового анкера Христиану Гюйгенсу и предложен ещё в XVII веке. Интересно, что в качестве топлива предполагалось использовать порох, а сама идея была подсказана артиллерийским орудием. Все попытки Дени Папена (упомянутого выше, как создатель первой паровой машины) построить машину на таком принципе, успехом не увенчались. Первый надёжно работавший ДВС сконструировал в 1860 году французский инженер Этьен Ленуар. Двигатель Ленуара работал на газовом топливе. Спустя 16 лет немецкий конструктор Николас Отто создал более совершенный 4-тактный газовый двигатель. В этом же 1876 году шотландский инженер Дугальд Кларк испытал первый удачный 2-тактный двигатель. Совершенствованием ДВС занимались многие инженеры и механики. Так, в 1883 году немецкий инженер Карл Бенц изготовил использованный им в дальнейшем 2-тактный ДВС. В 1897 году его соотечественник и тоже инженер Рудольф Дизель предложил ДВС с воспламенением рабочей смеси в цилиндре от сжатия воздуха, названный впоследствии дизелем.

В XX веке ДВС стал основным двигателем в автомобильном транспорте. В 1970-х годах почти 80 % суммарной мощности всех существовавших ДВС приходилось на транспортные машины (автомобили, трактора и прочее). Параллельно шло совершенствование гидротурбин, применявшихся на гидроэлектростанциях. Их мощность в 1970-х годах превысила 600 МВт.

В первой половине XX века создали новые типы первичных двигателей: газовые турбины, реактивные двигатели, а в 1950-х и ядерные силовые установки. Процесс совершенствования и изобретения первичных двигателей продолжается.

Вторичные двигатели [ | ]

Электродвигатели [ | ]

В 1834 году русский учёный Борис Семёнович Якоби (так писалось его имя в русской транскрипции) создал первый пригодный для практического использования электродвигатель постоянного тока.

В 1888 году сербский студент и будущий великий изобретатель Никола Тесла высказал принцип построения двухфазных двигателей переменного тока, а год спустя русский инженер Михаил Осипович Доливо-Добровольский создал первый в мире 3-фазный асинхронный электродвигатель, ставший наиболее распространённой электрической машиной.

Пневмодвигатели и гидромашины [ | ]

Пневмодвигатели и гидромашины, соответственно, работают от сетей (баллонов) высокого давления воздуха или жидкости преобразуя гидравлическую (пневматическую) энергию насосов. Их широко применяют в качестве исполнительных механизмов в различных устройствах и системах. Так, созданы пневмолокомотивы (особенно пригодны для работ во взрывоопасных условиях, например в шахтах, где тепловые двигатели не применимы из-за температурных условий, а электрические — из-за искр при коммутации), с помощью гидромашин осуществляется привод гусениц в некоторых типах тракторов и танков, перемещение рабочих органов бульдозеров и экскаваторов. Всё разнообразнее конструкции экологически чистых городских автомобилях на пневмоприводах, предлагаемых инженерами разных стран. Вторичные двигатели играют большую роль в технике, однако их мощность относительно невелика. Их также широко применяют и в миниатюрных и сверхминиатюрных устройствах.

Классификации [ | ]

По источнику энергии [ | ]

Двигатели могут использовать следующие типы источников энергии:

  • электрические;
    • постоянного тока (электродвигатель постоянного тока);
    • переменного тока (синхронные и асинхронные);
  • электростатические;
  • химические;
  • ядерные;
  • гравитационные;
  • пневматические;
  • гидравлические;
  • лазерные.

По типам движения [ | ]

Получаемую энергию двигатели могут преобразовывать к следующим типам движения:

  • вращательное движение твёрдых тел;
  • поступательное движение твёрдых тел;
  • возвратно-поступательное движение твёрдых тел;
  • движение реактивной струи;
  • другие виды движения.

Электродвигатели, обеспечивающие поступательное и/или возвратно-поступательное движение твёрдого тела:

  • линейные;
  • индукционные;
  • пьезоэлектрические.
  • ионные двигатели;
  • стационарные плазменные двигатели;
  • двигатели с анодным слоем;
  • радиоионизационные двигатели;
  • коллоидные двигатели;
  • электромагнитные двигатели и др.

По устройству [ | ]

Двигатели внешнего сгорания — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела:

Двигатели внутреннего сгорания — класс двигателей, у которых образование рабочего тела и подвод к нему тепла объединены в одном процессе и происходят в одном технологическом объёме:

  • двигатели с герметично запираемыми рабочими камерами (поршневые и роторные ДВС);
  • двигатели с камерами, откуда рабочее тело имеет свободный выход в атмосферу (газовые турбины).

По типу движения главного рабочего органа ДВС с запираемыми рабочими камерами делятся на ДВС с возвратно-поступательным движением (поршневые) (делятся на тронковые и крецкопфные) и ДВС с вращательным движением (роторные), которые по видам вращательного движения делятся на 7 различных типов конструкций. По типу поджига рабочей смеси ДВС с герметично запираемыми камерами делятся на двигатели с принудительным электрическим поджиганием (калильным или искровым) и двигатели с зажиганием рабочей смеси от сжатия (дизель).

По типу смесеобразования ДВС делятся на: с внешним смесеобразованием (карбюраторные) и с непосредственным впрыском топлива в цилиндры или впускной коллектор (инжекторные). По типу применяемого топлива различают ДВС работающие на бензине, сжиженном или сжатом природном газе, на спирте (метаноле) и пр.

Реактивные двигатели [ | ]
  • прямоточные реактивные (ПВРД);
  • пульсирующие реактивные (ПуВРД);
  • газотурбинные двигатели:
    • турбореактивные (ТРД);
    • двухконтурные (ТРДД);
    • турбовинтовые (ТВД);
    • турбовинтовентиляторные ТВВД;
Ракетные двигатели [ | ]
  • жидкостные ракетные двигатели;
  • твердотопливные ракетные двигатели;
  • ядерные ракетные двигатели;
  • некоторые типы электроракетных двигателей.

По применению [ | ]

В связи с принципиально различными требованиями к двигателю в зависимости от его назначения, двигатели идентичные по принципу действия, могут называться «корабельными», «авиационными», «автомобильными» и тому подобными.

Категория «Двигатели» в патентоведении одна из наиболее активно пополняемых. В год по всему миру подаётся от 20 до 50 заявок в этом классе. Часть из них отличаются принципиальной новизной, часть — новым соотношением известных элементов. Новые же по конструкции двигатели появляются очень редко.

Читать еще:  Что такое прострелы в двигателе

Производство [ | ]

Переносные значения [ | ]

Важность, первичность двигателя в технике привела к тому, что слово «двигатель» употребляется в переносном смысле во всех сферах деятельности человека (например, в экономике общеизвестно выражение «Реклама — двигатель торговли»)

История Российской империи

История – сокровищница наших деяний, свидетельница прошлого, пример и поучение для настоящего, предостережение для будущего (М. Сервантес)

«Толковый словарь живого великорусского языка» — личный и научный подвиг В.И. Даля

Владимир Иванович Даль

В историю русской культуры В. И. Даль вошёл, прежде всего, как автор «Толкового словаря живого великорусского языка».

Но известен Даль не только Словарём, который он составлял 53 года своей жизни. Он был этнолингвистом (собирал народные песни и сказки, лубочные картины), историком, лингвокультурологом, писателем и врачом, человеком разносторонних интересов, другом Жуковского, Пушкина, Крылова, Гоголя. Даль знал около 12 языков, в том числе тюркские языки. Написал учебники по ботанике и зоологии.

Обилие талантов и способность к языкам Даль унаследовал от своих родителей.

Происхождение

Его отец, обрусевший датчанин Йохан (Иоганн) Кристиан вон Даль, принял российское подданство с русским именем Иван Матвеевич Даль в 1799 г. Он был богословом и медиком, знал немецкий, английский, французский, русский, идиш, латынь, греческий и древнееврейский языки. Узнав о его лингвистических способностях, императрица Екатерина II вызвала его в Петербург на должность придворного библиотекаря.

Мать, Мария Христофоровна Даль (урождённая Фрейтаг), свободно владела пятью языками. А бабушка Владимира Даля, Мария Ивановна Фрейтаг, занималась литературой и даже перевела на русский язык некоторые произведения.

Дом Далей в Луганске

Владимир Иванович Даль родился в посёлке Луганский завод (сейчас это город Луганск) 10 (22) ноября 1801 г. и прожил там всего 4 года, но навсегда сохранил память о месте своего рождения, взяв псевдоним Казак Луганский. Под этим псевдонимом он начал своё творчество.

Образование

Начальное образование Даль получил дома, а затем учился в Петербургском морском кадетском корпусе. В 1817 г. во время учебного плавания он посетил Данию и тогда уже понял, что истинной родиной для него является России. Вот как он сам пишет об этом: «Когда я плыл к берегам Дании, меня сильно занимало то, что увижу я отечество моих предков, моё отечество. Ступив на берег Дании, я на первых же порах окончательно убедился, что отечество моё Россия, что нет у меня ничего общего с отчизною моих предков». В конце жизни он добровольно перешёл из лютеранства в православие.

Гардемарин Владимир Даль

Окончив кадетский корпус и прослужив несколько лет на флоте, В. Даль в 1826 г. поступил в Дерптский университет на медицинский факультет, прервав учёбу в 1828 г. с началом русско-турецкой войны, работая врачом в действующей армии. В качестве военного врача он принимал участие и в польской кампании 1831 г.

Служа ординатором в Петербургском военно-сухопутном госпитале, Даль становится медицинской знаменитостью Петербурга: он приобрёл известность замечательного хирурга, во время операции владел обеими руками одинаково. Проявил себя как способный окулист – делал успешные операции по снятии катаракты. Увлекался гомеопатией и защищал её.

Литературная деятельность

Одна из книг В. Даля

Литературную деятельность начал как поэт, прозаик, но это были эпизодические литературные опыты. А известным литератором он стал после публикации «Русских сказок и поговорок» в 1832 г., именно эту книгу он подписал псевдонимом Казак Луганский.

В.И. Даль и А.С. Пушкин

Именно в это время произошло знакомство Даля с Пушкиным – он сам понёс поэту книгу «Русских сказок и поговорок». С этой встречи началась их дружба, длившаяся до самой смерти А.С. Пушкина.

Даль сопровождал Пушкина по пугачёвским местам, когда тот писал «Историю Пугачёва». Участвовал в лечении поэта от смертельной раны, полученной на дуэли, и оставался с ним вплоть до смерти Пушкина. Вёл дневник истории болезни, а позже присутствовал при вскрытии вместе с Н. Арендтом и писал протокол.

Далю умирающий Пушкин передал свой золотой перстень-талисман с изумрудом со словами: «Даль, возьми на память». Когда тот отрицательно покачал головой, поэт добавил: «Бери, друг, мне уж больше не писать». Наталья Николаевна Пушкина подарила Далю пробитый пулей сюртук Пушкина, тот самый сюртук-выползину – это слово когда-то поэт услышал от Даля, и оно ему очень понравилось.

Памятник Пушкину и Далю в г. Оренбурге. Скульптор Надежда Петина

«Толковый словарь живого великорусского языка»

В мировой практике не известен другой подобного рода лексикографический труд. Создание Словаря – личный и научный подвиг Даля. Он включает 200 тысяч слов. Писатель и биограф Даля Павел Иванович Мельников (псевдоним Андрей Мельников-Печерский) считал, что «для составления такого словаря потребовалась бы целая академия и целое столетие». Сам В. Даль о себе и своём Словаре говорил так: «Писал его не учитель, не наставник, не тот, кто знает его лучше других, а кто более многих над ним трудился; ученик, собиравший весь век свой по крупице то, что слышал от учителя своего, живого русского языка».

«Толковый словарь живого великорусского языка» в 4 томах

Прошло уже более 200 лет со дня рождения Даля, но труд его не перестаёт интересовать и привлекать всех любителей русского языка, учёных-лингвистов. По-прежнему интересно, как создавался этот огромный Словарь, были ли у него предшественники, почему он привлёк внимание не только учёных, но и литераторов? Чем сегодня для всех нас является этот Словарь?

Конечно, у Даля были предшественники. Уже в XVIII в. проявился научный интерес к простонародным и «областным словам» (сейчас они называются диалектными). Научный интерес к простонародной лексике отражён и в «Словаре Академии Российской 1789-1794 гг.», составлявшемся под руководством княгини Екатерины Романовны Дашковой, которая обратила внимание Екатерины II на необходимость описания родного языка, как это делалось в европейских академиях того времени.

Но составители прежних, особенно академических, словарей нормой считали систему книжного церковнославянского языка. Этот язык был оторван от живой народной речи. Даль это понимал. Он видел, что среди образованных людей преобладает либо пренебрежительное отношение к народному языку, либо, как он выразился, «оглядка на него… как будто из одной снисходительной любознательности». Даля удручало, что современники, не заботясь об изучении своего языка, предпочитали использовать чужие слова и обороты речи, «бессмысленные на нашем языке, понятные только тому, кто читает нерусскою думою своею… переводя читаемое мысленно на другой язык». Он приводил в пример лучших писателей: Державина, Карамзина, Крылова, Жуковского и Пушкина, которые «избегали чужеречий» и «старались… писать чистым русским языком».

Замысел

Главная цель его труда «подорожить народным языком и выработать из него язык образованный». В. Даль не был ни учёным, ни филологом, он признавался, что ему недоставало «основательных познаний» в грамматике, но его любовь к языку была настолько сильна, что казалось, что «близкое знакомство» и «сильное сочувствие к живому русскому языку» смогут «заменить учёность».

Прежде чем взяться за дело, он долго искал способы описания слов: алфавитные (в них слова располагались в «азбучном порядке») и гнездовые («корнесловные») словари. Первый способ он отверг как «мёртвый список», утративший живые и разумные связи между словами. Второй способ был ему ближе, но труден для осуществления.

Работа над Словарём

И тогда он попытался создать словарь, совмещающий оба способа описания слов. Он делит слова на одиночные («не имеющие родственников», например, абажур) и гнездовые. Гнездовые слова располагаются по-разному. Если в словообразовательное гнездо входят родственные слова с суффиксами, то они приводятся при исходном корневом слове. Если же гнездо включает слова, имеющие приставку или приставку и суффикс, то такие слова были размещены в разных местах, по алфавиту. Так, слова «варить», «взваривать» и «разваривать» оказались в разных местах. Такой словарь называют алфавитно-гнездовым.

Сам Даль и назвал свой Словарь «толковым», он считал, что слово нужно толковать, объяснять. Для иллюстрации значения слова Даль использовал пословицы и поговорки, которых в его труде более 30 тысяч. Но автор считал тот факт, что у него нет книжных примеров, недостатком своего словаря. Ему не хватило времени их искать, да и в литературе того времени было мало образцов «живого русского языка». Но он вводил для иллюстрации и собственные примеры: «Вот так и пойду стучать табакеркой по головам! – говаривал наш учитель высшей математики в Морском корпусе».

Оценки Словаря

Никогда никакой труд не оценивается однозначно. Так было и со словарём Даля.

Монета Банка России из серии «Выдающиеся личности России». К 200-летию со дня рождения В.И. Даля (2 рубля, реверс)

Академик М.П. Погодин: «Теперь русская Академия без Даля немыслима». В. И. Даля избрали почётным членом Российской академии наук, ему была присуждена Ломоносовская премия.

Русское географическое общество наградило Даля золотой медалью, Дерптский университет удостоил его премии, Общество любителей российской словесности избрало его своим членом. Историк русского языка И.И. Срезневский писал: «Давно уже в русской литературе не было явления в такой мере достойного общего внимания и признательности, как этот словарь… Это одно из тех произведений, которые своим появлением действуют на ход образованности народной…».

Белинский говорил о любви Даля к Руси: «…он любит её в корню, самом стержне, основании её, ибо он любит простого русского человека, на обиходном языке нашем называемого крестьянином и мужиком… После Гоголя это до сих пор решительно первый талант в русской литературе». Тургенев назвал словарь Даля памятником, который тот сам себе воздвиг. Лев Толстой изучал Словарь и изданные Далем «Пословицы русского народа» и включил в роман «Война и мир» несколько полюбившихся пословиц. Корней Чуковский советовал читать словарь Даля переводчикам, чтобы они «всячески пополняли свой мизерный запас синонимов».

Но нашли в Словаре и недостатки. В основном это были просчёты метода «гнездования»: в одном гнезде иногда обнаруживались «явно несоединимые» слова (в качестве примера приводят поставленные рядом русское дыхать и иноязычное дышло, которое попало в русский язык из голландского или немецкого языка). Разорванными оказались «тяготеющие друг к другу» знак и значок, круг и кружить.

Даль продолжал работу над своим Словарём, обновлял его. Второе издание появилось уже после его смерти, в 1880-1882 гг.

В. Перов «Портрет В.И. Даля»

Ценность Словаря В. Даля для современного человека

Одно только количество слов в Словаре Даля говорит само за себя. Это национальное богатство. Словарь Даля – незаменимый источник информации, свидетельство любви к своему родному языку, бесценное языковое наследство. Это неиссякаемый источник живой воды – родного слова. Своей этнографической ценности некоторые очерки Даля не утратили до сих пор. «Язык не пойдет в ногу с образованием, не будет отвечать современным потребностям, если не дадут ему выработаться из своего сока и корня, перебродить на своих дрожжах», — считал В.И. Даль.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector