Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель Nissan 2

Двигатель Nissan 2.0 VC-T: переменная степень сжатия по рецепту. НАМИ!

Будет ли серийный кроссовер Infiniti QX50 нового поколения похож на концепт-кар QX Sport Inspiration? Теперь это не столь важно: свое место в энциклопедиях Infiniti займет как первый автомобиль, оснащенный серийным двигателем с переменной степенью сжатия. Спроектированным по рецепту. НАМИ!

Таким концепт-кар Infiniti QX Sport Inspiration был показан этой весной на автосалоне в Пекине, серийный QX50 унаследует многие его черты

На обычную рядную «четверку» мотор 2.0 VC-T (Variable Compression Turbo) похож лишь «до пояса», а ниже у него хитроумный рычажный механизм. Шатун каждого цилиндра соединен с коленвалом не напрямую, а через подвижное коромысло — траверсу, которая своим противоположным концом связана с тягой электроактуатора. Перемещение этой тяги меняет наклон траверсы и, соответственно, расстояние между поршнем и шатунной шейкой коленвала, варьируя положение верхней мертвой точки (ВМТ).

Что это дает? Чем выше поднимается поршень, тем меньше объем камеры сгорания над ним. Топливовоздушная смесь сжимается сильнее, а сгорая и расширяясь, совершает бо́льшую работу. Соотношение между объемом камеры сгорания и полным объемом цилиндра как раз и есть степень сжатия. Чем она выше, тем больше теоретически достижимая эффективность сгорания топ­лива. Однако попутно растет и риск возникновения взрывного сгорания, то есть детонации, — особенно при высоких нагрузках. Именно поэтому применение наддува заставляет не повышать, а наоборот, понижать степень сжатия.

Новый турбомотор 2.0 VC-T при крайнем верхнем положении траверсы способен достигать очень высокой степени сжатия 14,0:1 — как у атмосферных «четверок» Skyactiv компании Mazda. Но если маздовские моторы так работают во всех режимах, то двигатель Nissan — только на малых оборотах при небольших нагрузках. При их увеличении механизм переходит в промежуточные положения, понижая степень сжатия, а на высоких оборотах или под полным дросселем автоматика сдвигает ВМТ вниз — и степень сжатия падает до минимума: 8,0:1.

Мотор 2.0 VC-T ­немного крупнее и тяжелее обычных турбочетверок, но существенно компакт­нее двигателей V6, которые он должен заменить

Интересно, что двигатель по неофициальной информации выдает примерно 270 л.с. и 390 Нм крутящего момента — то есть форсирован на уровне обычных двухлитровых турбомоторов «заряженных» машин. Куда важнее, что агрегат 2.0 VC-T сулит сокращение расхода топлива на 27% по сравнению с атмосферной «шестеркой» Nissan 3.5 серии VQ, — которую, судя по всему, и призван заменить. А еще мотористы компании Nissan уверяют, что такие двигатели с изменяемой степенью сжатия станут альтернативой дизелям: ведь при схожей экономичности они требуют менее сложных систем очистки выхлопа и легче впишутся в строгие экологические нормативы.

Почему же раньше японцев никто не довел такие двигатели до серийного воплощения на легковушках? Ведь впервые эту идею еще в 20-х годах прошлого века предложил британский инженер Гарри Рикардо. Полвека назад в Америке выпускали «переменный» танковый дизель Continental AVCR-1100, а в конце 90-х аналогичные исследования вели Daimler, Volvo, Audi, Porsche, Honda, Ford, Suzuki, Peugeot и Citroen, Lotus, российский институт НАМИ, немецкая компания FEV.

Но за это время не появилось даже единого мнения, какой механизм считать наиболее эффективным. Вариант с раздвижными поршнями (как на дизеле AVCR-1100) грозит сложнос­тями со смазкой и не позволяет точно контролировать степень сжатия. Телескопичес­кие шатуны или щеки коленвала снижают надежность. Вспомогательные поршни, которые открывают дополнительные полости в стенках камеры сгорания, варьируя ее объем, ставят под угрозу герметичность. Эксцент­рики в нижних или верхних головках шатунов осложняют индивидуальное управление цилиндрами, а смещение коленвала относительно всего блока цилиндров требует еще и «переходников» в трансмиссии.

В ниссановском двигателе траверса (а) вращается вместе с коленвалом, а дополнительная система рычагов (б) с приводом от электроактуатора (в) контролирует ее наклон. Когда необходим переход на высокую степень сжатия, актуатор поворачивается по часовой стрелке, меняя положение эксцентрикового вала, который в свою очередь опускает правое плечо траверсы, а та своим противоположным плечом смещает поршень (г) и шатун вверх. При переходе на низкую степень сжатия механизм работает в обратной последовательности — и ВМТ уходит вниз

Ну а Saab 16 лет назад даже приглашал журналистов на тесты компрессорной «пятерки» 1.6 SVC (АР №21, 2000) с наклонным моноблоком, который смещался относительно коленвала. Мотор получился темпераментным (225 л.с.), но шумным и капризным на низах. А главное — дорогим и сложным. Поэтому до конвейера дело тоже не дошло.

Под конец 2000-х надежды подавал еще и французский двигатель ­MCE-5 для автомобилей Peugeot и Citroen: в нем поршень с «шатуном» были монолитны и толкали кривошип через зубчатую передачу и коромысло, положение которого корректировал сервопривод. Но все достоинства этого механизма нивелировала невозможность унифицировать такой мотор с традиционными двигателями.

А схему с траверсой и управляющей тягой, которую собирается применить Nissan, в конце 80-х запатентовали в. советском институте НАМИ! Самый же ранний патент компании Nissan датирован 2001 годом — и описывает очень похожий механизм, хотя и переосмысленный: с иной геометрией расположения элементов и нижним креплением управляющего рычага.

В саабовском двигателе SVC эксцент­риковый вал приподнимал или опускал опоры одной из сторон моноблока, в который были объединены блок цилиндров и его головка. Объем камеры сгорания менялся, но попутно менялось и положение верхней части двигателя под капотом, что требовало доработки впускной и выпускной систем. Интересно, что Saab тоже предлагал изменять степень сжатия в диапазоне от 8,0:1 до 14,0:1, однако при самой высокой степени мотор работал как атмосферник: муфта отключала привод компрессора

Кстати, еще раньше на работы ­НАМИ обратил внимание концерн Daimler: в 2002—2003 годах из России в Штутгарт были отправлены три «траверсных» мотора на основе мерседесовского дизеля OM611 (2,15 л) и бензиновой двухлитровой «четверки» М111. Российский механизм позволял менять степень сжатия в пределах от 7,5:1 до 14,0:1, но очень скоро Daimler и НАМИ обнаружили, что выгода от него весьма эфемерна: эффективность повышалась на 20% при переходе от минимальной степени сжатия к обычной (10,0:1), а дальнейшее повышение до 14,0:1 давало всего 3,5% выигрыша.

Почему же Nissan с оптимизмом смот­рит на серийную перспективу? Несмотря на сложность нового кривошипно-шатунного механизма с возросшими потерями на трение, на прибавку лишних десяти килограммов и на ограничения по унификации, в производство двигатели 2.0 VC-T должны пойти в конце 2017 года. Возможно, потому, что надежда на гибриды не оправдалась: в Америке за этот год продано всего 2,5 тысячи гибридомобилей Nissan и Infiniti. Делать ставку на дизели после скандала с концерном Volkswagen тоже не вариант. А «переменный» мотор поможет не только отказаться от закупки двухлитровых турбочетверок у концерна Daimler, но и прибавит козырей по части имиджевой рекламы. Ведь таких агрегатов действительно не делает никто в мире!

Читать еще:  Эллипс цилиндра двигателя причины

Кстати, мотор с переменной степенью сжатия как нельзя лучше подходит для ездового цикла по измерению расхода топлива. И это тоже козырь.

Что такое двигатель Мпи

На багажнике некоторых разновидностей модели Шкода Октавия а5 присутствует надпись 1.6 — МРI. Буквы обозначают тип двигателя и расшифровываются как multi point injection, что в переводе на русский обозначает многоточечный впрыск.

Система отличается от других подведением к каждому из 4 цилиндров отдельного инжектора для подачи топлива.

Двигатель MPI — бензиновый двигатель, использующий многоточечный впрыск топлива через инжекторы.

Топливная система

Каждому цилиндру – отдельный инжектор с форсункой!

Главная особенность инжекторных MPI-двигателей с распределенным впрыском топлива — это наличие у каждого цилиндра своего отдельного инжектора с форсункой. С помощью инжекторов осуществляется дозированный впрыск топлива в каждый отдельно взятый цилиндр, с распылением через форсунки. Такой способ позволяет равномерно распределять топливную смесь по всем цилиндрам. При этом, в отличие от TSI-двигателя, в конструкции MPI отсутствует топливная рейка и нет прямого впрыска топлива в цилиндр, который есть в системах FSI и TFSI.

Важно! Моторы с технологией MPI работают с опережением зажигания, из-за чего педаль газа становится очень чувствительной к воздействию.

Отсутствие турбонагнетателя

Еще одной значимой особенностью MPI-моторов является полное отсутствие в их конструкции турбонагнетателя при многоточечной системе впрыска. Вместо него MPI-моторы снабжены обычным бензонасосом с давлением в 3 атм. Порядок работы MPI-системы выглядит следующим образом:

  • из бензобака топливо подкачивается бензонасосом в инжектор;
  • электронный блок управления впрыском подает сигнал на инжектор, и топливо распыляется под давлением через форсунку на цилиндровый впускной клапан.

Система распределения впрыска топлива состоит из следующих элементов:

  • устройства для доставки топлива к инжекторам;
  • блок зажигания;
  • устройство для дозировки воздушной массы;
  • устройство для регулировки токсичности отработанных газов.

Контур водного охлаждения

Контур водного охлаждения в MPI-двигателях предназначен для охлаждения горючей смеси. При работе агрегата головка цилиндров очень сильно нагревается, а топливо подается под небольшим давлением. В результате возникает большая опасность появления газо-воздушной пробки, что может привести к перегреву с закипанием. Наличие контура водяного охлаждения горючей смеси предотвращает возникновение такого перегрева.

Достоинства и недостатки MPI двигателей

Такие агрегаты далеки от идеала. Для них характерны положительные и отрицательные моменты. Пришло время ознакомиться с ними.

Преимущества

Список положительных характеристик состоит из следующих пунктов:

  • простота конструкции обеспечивает лёгкий ремонт и доступное обслуживание;
  • допустимость использования 92 бензина, это касается и альтернативных и оригинальных моделей;
  • максимальная прочность;
  • большой пробег при своевременной замене фильтров и масла.

Преимущества внушительные, но они несколько меркнут после изучения отрицательных моментов.

Недостатки

Отрицательные характеристики связаны с особенностями конструкции. Список недостатков складывается из следующих пунктов:

  • ограниченность топливной системы связана со смешиваем топлива и воздуха не в цилиндрах, а в каналах;
  • слабый крутящий момент и недостаточная мощность выплывают из предыдущего пункта;
  • отсутствие особенной динамики, драйва и приемистости;
  • 8 клапанов — это мало.

Рано автомобилисты списали MPI со счетов. Фирма Skoda при разработке Yeti, которая предназначается для российского пользователя, не стала использовать турбированный двигатель 1,2. Вместо этого компания установила обновлённый и даже изменённый в некоторых моментах 1.6 MPI на 110 «лошадей». Этот агрегат больше относится к TSI, но в его конструкции отсутствуют турбирование и непосредственный топливный впрыск.

Как расшифровывается аббревиатура

Как мы уже успели узнать, перед нами находится инжекторный двигатель. В основе его работы лежит система впрыска топлива многоточечного типа. Эта особенность и дала название агрегату, ведь аббревиатура MPI обозначает Multi Point Injection. Разработчиком такого механизма считается концерн Volkswagen. Для каждого цилиндра предусмотрена своя отдельная форсунка или инжектор.

Причиной отказа от такого механизма является его несоответствие современным экологическим требованиям и экономическим основам, по которым живёт современное общество.

Что такое MPI-двигатель мы немного разобрались, но нам ещё предстоит узнать о принципе работы, рассмотреть достоинства и недостатки этого агрегата.

Принцип работы силовой установки MPI

Работает агрегат по следующему принципу:

  • каждый цилиндр оборудован отдельным инжектором;
  • поступление топливной массы осуществляется сразу через несколько точек;
  • для подачи топлива посредством бензонасоса имеется отдельный выпускной канал;
  • топливная масса попадает во впускной коллектор, давление при этом находится на уровне 3 атмосфер;
  • внутри коллектора топливо смешивается с воздухом, в результате чего создаётся особая рабочая смесь;
  • эта смесь через впускной клапан попадает под давлением в цилиндр.

В этих силовых установках присутствует опережение зажигания. Это значит, что в автомобилях с двигателем MPI педаль газа является чувствительной. Этот момент стоит учитывать водителям, которые владеют автомобилями с таким типом силовой установки.

В условиях России

Моторы с технологией MPI прекрасно подходят для использования в российских условиях.

  • Они не требовательны к качеству топлива, что актуально для российского топливного рынка. Ведь до сих пор топливо на многих российских автозаправках не отличается высоким качеством. Но MPI-моторы способны хорошо и долго работать даже на бензине с запредельным содержанием серы.
  • Простая и надежная, с дополнительной защитой от механических нагрузок, конструкция MPI-двигателя актуальна и для российских дорог, большинство из которых (так же, как и топливо) не отличается высоким качеством.
  • Двигатели MPI соответствуют российским экологическим стандартам по выхлопу в отличие от Европы, где экологические требования к двигателям намного выше.

Вполне возможно, что указанные выше факторы стали причиной открытия производственной линии по выпуску MPI-двигателей на заводе в Калуге. Однако списывать двигатели MPI с европейского рынка еще рано. И подтверждением этому может служить замена немецкими производителями TSI-двигателей 1.2 литра на неприхотливые MPI-двигатели 1.6 литра.

Видео о разборке мотора MPI:

Советы автомобилистам Статья о двигателе MPI — особенности мотора, его эксплуатация, достоинства и недостатки. В конце статьи — видео о разборе мотора MPI.

Skoda Octavia 2012, л. с. — просто так

Skoda Octavia, 2012

Skoda Octavia, 2008

Skoda Octavia, 2011

Skoda Octavia, 2012

Посмотреть больше машин на Дроме

Читать еще:  Датчик оборотов электро двигателя

Участвовать в обсуждениях могут только зарегистрированные пользователи.

Отличие TSI и MPI

«Twincharged Stratified Injection» (двойной наддув с послойным впрыском) – так расшифровывается аббревиатура TSI. Такую интерпретацию подали инженеры компании Volkswagen на начальном этапе. После, переименовали в Turbo Stratified Injection. Теперь аббревиатуру используют многие концерны, лишь с добавлением нескольких букв для отличия.

Отличия между двумя типами:

  • TSI обладает штатной системой надува. В моторе одновременно может быть два нагнетателя: турбированный компрессор и механический тип;
  • в MPI отсутствуют нагнетатели, конструкцией они не предусмотрены. Если речь заходит об MPI, подразумевают силовые агрегаты атмосферного типа;
  • TSI выдвигает ряд требований к моторному маслу, коэффициенту вязкости, периодичности замены;
  • в TSI топливо впрыскивается непосредственно в полость цилиндра. Для этого изготавливается специальной формы головка, поршни, топливный форсунки;
  • в MPI горючее поступает изначально во впускной коллектор, после чего в цилиндр в момент открытия клапанов. Для такой конструкции наличие бензинового насоса вовсе не обязательно, так как штатного давления достаточно для подачи топлива.

При возникновении поломок ремонт MPI обойдется в разы дешевле TSI. Этот фактор обладает весомой силой, для многих потенциальных владельцев он основополагающий.

Насколько Multi Point Injection отвечает современности

Ряд автопроизводителей Европы, Азии считают, что такой тип не имеет будущего, так как стремительное развитие технологий быстро оставит позади «новинку». Отчасти это правда. Активно развивает и поддерживает MPI только концерн Фольксваген и его структурные подразделения, в том числе и Škoda. Визитная карточка: двигателя с объёмами 1.3, 1.4 и 1.6 л.

Главная особенность силового агрегата в отсутствии какого-либо турбированного нагнетателя. Конструкция проста и интуитивно понятна:

  • бензиновый насос, подающий горючую смесь во впускной коллектор под высоким давлением. Рабочий показатель три атмосферы;
  • посредством впускного клапана форсунки топливо поступает внутрь цилиндра, где происходит воспламенение, отвод отработанных газов.

Multi Point Injection оснащен контуром водяного охлаждения горючей смеси. Звучит непривычно, это трудно представить, но система успешно работает. Наличие нестандартной конструкции объяснимо тем, что над головкой блока цилиндров повышенная температура, а топливо поступает под низким давлением. Последствия негативные, риск закипания, образования газовоздушной пробки. Без стороннего охладителя работа силового агрегата невозможна.

Преимущества MPI

  • простота конструкции. Очевидно, что такие двигатели проще силовых агрегатов, оснащенных TSI с турбированными нагнетателями, но никак не карбюраторного типа. Ряд ремонтов владельцы проводят самостоятельно, не прибегая к помощи специалистов СТО. Явная экономия на ежемесячном обслуживании;
  • лояльное отношение системы к качеству горючего. Применительно к странам СНГ, где топливо не всегда «хорошее», этот вариант приемлем. Силовой агрегат вполне комфортно работает на бензине марки АИ-92;
  • средний срок эксплуатации до капитального ремонта составляет 300 000 км. Такие цифры приводит изготовитель. На практике ресурс меньше на 50 000 км. Мало кто принимает во внимание фактор своевременной замены моторного масла, очистительных элементов, заправки качественным топливом;
  • минимальные риски, связанные с перегревом;
  • возможность механической регулировки угла опережения зажигания;
  • конструкция предусматривает наличие резиновых опор над двигателем. Это позволяет гасить колебания, вибрации в процессе работы.

Недостатки MPI

  • повышенный расход горючего. Фактор достаточно спорный, по-разному можно его интерпретировать. В сравнении с TSI он увеличен на 7%. Многих потенциальных покупателей это отпугивает, отталкивает;
  • невысокий показатель крутящего момента, и как следствие средний коэффициент мощности. Топливная смесь смешивается непосредственно во впускных каналах, а не в цилиндрах. Это нетипично для большинства конструкций, вызывает недопонимание у конструкторов TSI.

Автомобили с предустановленным MPI не считаются резвыми, быстрыми, активными. Скорее средний уровень для ценителей неспешного драйва, семейного отдыха.

Статистика продаж по СНГ и РФ, в том числе, показывает, что для владельцев приоритетным остается все же показатель мощности, нежели практичности.

Mazda Z engine

  • 1.3 L; 82.3 cu in (1,348 cc)
  • 1.5 L; 90.9 cu in (1,489 cc)
  • 1.5 L; 91.4 cu in (1,498 cc)
  • 1.6 L; 97.5 cu in (1,598 cc)
  • 74 mm (2.91 in)
  • 75.3 mm (2.96 in)
  • 78 mm (3.07 in)
  • 78.4 mm (3.09 in)
  • 83.6 mm (3.29 in)

The Mazda Z-series is a smaller gasoline inline-four engine ranging in displacements from 1.3 L to 1.6 L. They are the evolution of the cast-iron block B-engine.

The Z-engine has 16-valves operated by dual overhead camshafts, which are in turn driven by a timing chain. The block of the 98-02 Z5, ZM and ZL engine is cast iron same as the earlier B series of engines.

Other Z engines have aluminum alloy block and head, with cast-iron cylinder liners. The block features split upper and lower block assembly for added strength and rigidity, special long intake manifold for added torque, S-VT continuous variable valve timing, and a stainless steel 4:1 exhaust header.

In 2011, Mazda started to introduce the SkyActiv G-engine as a new, more economical option with vehicles that also ran the Mazda Z-engine. Production was finally halted in 2014, being the last year of the Demio/Mazda2, Verisa as well as Axela/Mazda3 of their generations. From here on in, Mazda moved on to the full SkyActiv architecture vehicles including running only the aforementioned SkyActiv G-engine but now offering it in also larger displacements, as well as a new SkyActiv D-engine turbo-diesel.

Contents

  • 1 Z5
  • 2 ZJ
  • 3 ZY
  • 4 ZL
  • 5 Z6/M
  • 6 References
  • 7 External links

Z5 [ edit ]

The 1.5 L (1,489 cc) 92 hp (69 kW; 93 PS) Z5-DE was used in the 1995-1998 Mazda Protegé, Mazda Lantis (Astina) and in Mazda Familia Neo (1994–1997). Bore and stroke were 75.3 mm × 83.6 mm (2.96 in × 3.29 in).

The Z5 engine was introduced as the first of a newer line of Mazda Z-series engines. The Z series was a new design based on the B-series block, block internals and oil-pan and a different DOHC head. [1]

The block is cast iron, the oil-pan is a 2-piece design with an upper aluminum and lower stamped steel, piston oil squirters are standard. The cylinder head was a compact design with round intake and exhaust ports. JDM versions produce 97 PS (71 kW; 96 hp) and 110 PS (81 kW; 108 hp). There was also lean-burn version introduced in August 1995; this model produces 94 PS (69 kW; 93 hp) and sees gas mileage improvements of ten to fifteen percent in the standard Japanese test cycle.

Читать еще:  Что цокает в двигателе авео

ZJ [ edit ]

The 1.3 L (1,348 cc) ZJ 74 mm × 78.4 mm (2.91 in × 3.09 in) is available with either continuous cam-phasing VVT ZJ-VE 91 hp (68 kW; 92 PS) or a high-efficiency Miller cycle ZJ-VEM 90 hp (67 kW; 91 PS).

  • 2003–present Mazda Demio ZJ-VE
  • 2007–present Mazda Demio ZJ-VEM

ZY [ edit ]

1.5 L (1,498 cc) 111 hp (83 kW; 113 PS) ZY-VE 78 mm × 78.4 mm (3.07 in × 3.09 in)

ZL [ edit ]

1.5 L (1,498 cc) 88 hp (66 kW; 89 PS) EEC, 110 hp (82 kW; 112 PS) JIS, ZL-DE 78 mm × 78.4 mm (3.07 in × 3.09 in)

1.5 L (1,498 cc) 130 hp (97 kW; 132 PS) JIS ZL-VE 78 mm × 78.4 mm (3.07 in × 3.09 in) The 1.5 L ZL-VE makes more power than the slightly larger 1.6 L Z6/M-DE its due to variable valve timing on the intake cam (S-VT).

Z6/M [ edit ]

1.6 L (1,598 cc) 105 hp (78 kW; 106 PS) ZM-DE 78 mm × 83.6 mm (3.07 in × 3.29 in) The ZM engine, also known as the Z6, has an identical bore yet slightly longer stroke than the ZL as well as a revised head with round intake and exhaust ports. It has exactly the same bore and stroke as the previous generation B6.

The 1.5 L (1,498 cc) 130 hp (97 kW; 132 PS) ZL-VE and 1.6 L (1,598 cc) 105 hp (78 kW; 106 PS) ZM-DE are closely related engines with an equal bore 78 mm (3.1 in) and share some major parts. The ZL has a stroke of 78.4 mm (3.09 in) whilst the ZM has 83.6 mm (3.29 in).

Живучий малый с тремя цилиндрами: 1.4 TDI (AMF)

В конце 1990-х инженеры Volkswagen продвигали свои дизельные двигатели с насос-форсунками. Они, конечно, накопили немало опыта, положительного и отрицательного, и в результате отказались от такой системы питания в пользу ставшего очень распространным Common Rail.

«Королем» двигателей с насос-форсунками был знаменитый V10 TDI (AYH, BKW, BLE, BWF), который появился в 2002 году.

А вот самым младшим в этой линейке является 3-цилиндровый двигатель 1.4 TDI (AMF, ATL, BNM, BWB, BMS, BAY, BHC, BMW, BNV). Этот двигатель был создан «отсечением» одного цилиндра от двигателя 1.9 TDI. Оба двигателя относятся к семейству EA 188, разработанному на базе легендарных моторов EA 180.

На словах звучит просто, но на самом деле все сложно. Сокращение цилиндров до трех штук позволяет существенно облегчить двигатель, но создает проблемы с его балансировкой.

Блок цилиндров двигателя 1.4 TDI изготовлен из серого чугуна. ГБЦ из алюминиевого сплава, в ней один распредвал, приводящий тарельчатыми толкателями по два клапана на цилиндр и сами насос-форсунки через роликовые рычаги (рокеры). От распредвала также приводится тандемный топливо-вакуумный насос.

Переход на три цилиндра потребовал серьезных модификаций кривошипно-шатунного механизма. Коленвал такого двигателя не «плоский», т.е. с симметричным (на 180°) расположением колен относительно оси. В «трехцилиндровом» коленвале колена расположены равномерно, угол между соседними коленами составляет 120°. По этой причине моменты сил инерции кривошипно-шатунного механизма трехцилиндрового двигателя не уравновешивают друг друга.

Кроме того, у трехцилиндрового двигателя 1.4 TDI, если выражаться совсем простым языком, очень большие промежутки между тактами сгорания, а такты сжатия и сгорания не уравновешивают друг друга. Эта особенность также вносит свою лепту в неровную работу двигателя.

Из-за этого возникает радиальное биение коленвала, которое удается компенсировать инерционным гасителем, установленным на маховике. Также на коленвале предусмотрена пара противовесов, располагающихся друг напротив друга на щеках соседних колен. Шкив коленвала, разумеется, демпферный. В приводе ГРМ используется усиленный ремень, который способен долгое время противостоять колебаниям и нагрузкам и обеспечивать необходимый «нажим» распредвала на форсунки, впрыскивающие топливо под давлением в 2000 бар.

Есть у двигателя 1.4 TDI и балансирный вал, на котором находятся еще два противовеса, вращающиеся со скоростью коленвала, но в противоположном направлении.

Балансирный вал находится в одном модуле с масляным насосом. Как вы уже поняли, этот модуль серьезно отличается от модуля балансиров, который применяется на многих (но не на всех) двигателях 1.9 TDI. Отличия следующие:

  • У 1.4 TDI один балансирный вал, вращающийся со скоростью коленвала. У 1.9 TDI в модуле два балансирных вала, вращающихся с удвоенной скоростью коленвала.
  • У мотора 1.4 TDI отсутствует промежуточный вал привода маслонасоса. Маслонасос и балансирный вал приводятся цепью от коленвала.

Еще одна особенность двигателя 1.4 TDI заключается в том, что его блок совершенно неремонтопригоден. После ослабления болтов крышек коренных подшипников деформируется алюминиевая постель коленвала.

Проблемы и надежность 3-цилиндрового дизеля 1.4 TDI

Несмотря на весьма облегченную и вместе с тем усложненную конструкцию двигатель 1.4 TDI (AMF) получился совсем не капризным и довольно надежным. Этот двигатель легко ходит более 300 000 км, в Германии на форуме владельцев Audi A2 ведется статистика пробега этого двигателя. И там уже предостаточно моторов 1.4 TDI с пробегом более 500 000 км, а рекордсменами являются двигатели, пробежавшие более 700 000 км.

На двигателе 1.4 TDI хорошо ходит и ГБЦ, и насос-форсунки, не возникает проблем с цилиндро-поршневой группой. Однако слабое место в этом силовом агрегате все-таки есть.

Дело в том, что цепной привод балансирного вала и масляного насоса от коленвала при обилии не уравновешивающих друг друга сил инерции ― далеко не самое лучшее решение. Постоянные колебания приводят к растяжению цепи и ее разрыву. И разрушение цепи на двигателе 1.4 TDI все-таки случаются, хотя и при весьма больших пробегах – далеко за 300 000 км. При обрыве цепи двигатель получает тотальные повреждения, в основном из-за резкого прекращения смазки.

Также на двигателе 1.4 TDI могут возникать неполадки турбокомпрессора, связанные с регулировкой перепускного клапана. На штоке клапана предусмотрена механическая регулировка гайкой. Иногда гайка просто отвинчивается, нарушается регулировка, и клапан будет открываться слишком рано, поздно или останется приоткрытым.

В остальном крохотный дизель 1.4 TDI весьма надежен, по надежности он даже превосходит своих 4-цилиндровых родственников, о которых мы уже рассказывали.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector