Sw-motors.ru

Автомобильный журнал
63 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

НАУКА и ОБРАЗОВАНИЕ

НАУКА и ОБРАЗОВАНИЕ

Издатель ФГБОУ ВПО «МГТУ им. Н.Э. Баумана». Эл № ФС 77 — 48211. ISSN 1994-0408

Д . т . н . Складчиков Е . Н .,

инж . Ермишин Н . Н .

Благодаря простоте конструкции, широким технологическим возможностям, нетребовательности к специальным видам энергии электровинтовые прессы (ЭВП) находят широкое применение в промышленности как один из основных видов кузнечно-штамповочного оборудования [1,2]. Наибольшее распространение получили ЭВП с асинхронным, чаще всего дугостаторным приводом, когда статор охватывает ротор на двух угловых промежутках меньших 180 0 .

Недостатками ЭВП являются большие значения фазных токов, пиковый характер его изменения, низкий КПД и коэффициент мощности и, как следствие, большое потребление энергии. Эти недостатки являются следствием несоответствия свойств асинхронного привода условиям его работы, когда дважды за цикл при ходе вниз и ходе вверх привод работает в пусковом режиме. В начале как хода вниз, так и хода вверх относительное скольжение асинхронного двигателя равно единице и остается значительным в процессе разгона. Абсолютное скольжение при этом равно синхронной частоте w двигателя.

Одним из путей преодоления указанных недостатков является применение для питания двигателя ЭВП напряжения питания изменяемой частоты [3]. Преимущество использования частотного управления реализуется за счет понижения частоты напряжения и, соответственно, синхронной частоты двигателя w в начальной части разгона подвижных частей пресса с их повышением по мере разгона в опережающем режиме по отношению к скорости двигателя w . При этом многократно уменьшается скольжение асинхронного двигателя, снижаются токовые нагрузки, повышается КПД двигателя, уменьшается потребление электрической энергии.

Гибкость изменения частоты напряжения, обеспечиваемая современными частотными преобразователями, позволяет оптимизировать работу привода путем выбора законов изменения частоты питающего напряжения.

Анализ работы электровинтового пресса с частотным управлением приводом и оптимизация его работы выполнена с привлечением программного комплекса (ПК) анализа динамических систем ПА9 [4]. В качестве объекта анализа выбран ЭВП Ф1732 Чимкетского завода КПО с номинальной энергией удара 7 КДж. Конструктивная схема пресса показана на рис. 1.

Он содержит станину 1 со столом 2; асинхронный двигатель с дуговыми статорами 3, и ротором 4, являющимся одновременно маховиком; главный исполнительный механизм с винтом 5, смонтированном в двухстороннем упорном подшипнике 6, и гайкой 7, закрепленной к ползуну 8; колодочный управляемый тормоз 9, двигатель 10 вентилятора охлаждения дугостаторного двигателя и некоторые другие устройства. Маховик 4 соединен в винтом 5.

Машинный цикл работы пресса включает ход вниз, в процессе которого подвижные части пресса (маховик 4, винт 5, ползун 8) разгоняются электромагнитным моментом двигателя и силой тяжести ползуна и ход вверх, состоящий из периода разгона подвижных частей и периода торможения. При ходе вверх разгон подвижных частей осуществляется двигателем в реверсном режиме, торможение – тормозом и силой тяжести ползуна. В конце хода вниз происходит деформирование заготовки в штампе, части которого закреплены на столе 2 и ползуне 8. Деформирование осуществляется за счет расхода кинетической энергии подвижных частей, преимущественно маховика, запасенной при их разгоне вниз.

Машинный цикл работы пресса показан на рис. 2, где приведены графики изменения скорости ползуна V П , перемещения ползуна S П , частоты вращения маховика w . График последней при соответствующем выборе масштаба совпадает с графиком V П . Синхронная частота вращения двигателя — w . На графиках цветом выделены участки, показывающие ширину зоны абсолютного скольжения двигателя w — w в периоды включенного состояния двигателя.

Математическая модель пресса показана на рис. 3. Здесь представлена топология ЭВП в окне схемного графического редактора ПК ПА9. В таблице показано поэлементное соответствие пресса и модели. В качестве модели дугостаторного двигателя привлечена модель асинхронного двигателя серии 4А с частотным управлением. Приведение частоты вращения двигателя серии 4А (750 об/мин.) к частоте вращения дугостаторного привода (300 об/мин.) осуществлено включением в модель пресса модели зубчатого редуктора с передаточным числом 2,5, отсутствующего в конструкции ЭВП. Для исключения влияния этой модели на процессы в прессе моменты инерции элементов модели редуктора приняты равными нулю, а КПД редуктора — равным 1. Для обеспечения требуемой быстроходности пресса и улучшения энергетических показателей был выбран двигатель мощностью 30 КВт.

Двухскоростной электродвигатель – конструкция и сфера использования

Пожалуй, нет такой отрасли промышленности, где не используется оборудование с электродвигателями. Очень часто процесс работы ряда станков и механизмов требует ступенчатого регулирования скорости, поэтому одним из наиболее популярных вариантов комплектации является двухскоростной электродвигатель.

Двухскоростные электродвигатели – особенности конструкции

Несмотря на появление на рынке электротехники более современных двигателей с частотными преобразователями, двухскоростные агрегаты широко используются даже на самом современном оборудовании. Это объясняется рядом причин:

  • Простота и надежность конструкции.
  • Возможность развивать разную мощность на разных скоростях благодаря наличию двух пар обмоток на одном роторе, что позволяет получить две скорости вращения и две пары полюсов.
Читать еще:  Что такое один моточас двигателя

Двигатели с частотным преобразователем могут выдавать только постоянную мощность, соответственно, это несколько снижает сферу их использования.

Двухскоростные двигатели – сфера применения

Двухскоростные электродвигатели давно и успешно используются во многих отраслях сельского хозяйства и промышленности, в частности, при комплектации следующих видов оборудования:

  • лебедок и крановых установок;
  • лифтов и других подъемных механизмов;
  • станков для химической промышленности и металлургии;
  • вентиляторов;
  • циркуляционных механизмов;
  • буровых установок.

Кроме того, подобные силовые агрегаты устанавливаются на бытовом оборудовании, станках, профессиональной технике (в столовых, прачечных и пр.), применяются в судостроении (для приведения в движение гребных винтов).

Таким образом, двухскоростные электродвигатели отличаются:

  • невысоким уровнем шума;
  • минимальной вибрацией;
  • высокой производительностью;
  • высоким пусковым моментом.

В зависимости от модели, эти двигатели предназначены для использования в разных климатических условиях, в частности, в:

  • умеренном климате;
  • умеренно холодном климате;
  • морском и речном климате (т.е. в условиях повышенной влажности).

Разнообразие сфер применения данных агрегатов в полной мере обусловлено вышеизложенными характеристиками.

Схемы подключения

Данные двигатели производятся на базе односкоростных, следовательно, габариты и параметры и принципы подсоединения практически одинаковы.

  • Обмотка статора. Возможны два варианта: одна или две независимые обмотки. В первом случае путем переключения полюсов можно получить изменение скорости в пропорции 1:2, во втором случае – 1:4. Двигатели второго типа часто используются в подъемных механизмах: например, кабина лифта двигается на определенной скорости между этажами, а по мере приближения к конечной точке скорость понижается.
  • Иногда может варьироваться форма пазов ротора и длина сердечников.

Существуют различные схемы подключения двухскоростных электродвигателей. Самый распространенный тип – мотор, работающий с 2-4 полюсами, который имеет одну обмотку с подключением Даландера. Если необходима меньшая скорость запуска, то подключение производится между фазами двигателя треугольником. При запуске на большей скорости двигатель работает с двумя полюсами, а подключение осуществляется в виде двойной трехлучевой звезды. При автоматическом запуске для моторов данного типа применяются три контактора.

Кроме того, выделяются следующие типы подключений:

  • Обмотка Даландера плюс независимая обмотка.
  • Две обмотки Даландера.
  • Две независимые обмотки, взаимодействующие с разным числом полюсов. Подключение производится «звездой».

Система генератор – двигатель (ГД)

В системе ГД в качестве управляемого преобразователя используется генератор постоянного тока независимого возбуждения, приводимый во вращение асинхронным или синхронным двигателем. Принципиальная схема системы изображена на рис. В качестве приводного двигателя рабочей машины используется ДНВ.

Пуск системы осуществляется включением сетевого (гонного) двигателя, вращающего генератор. Приводной двигатель перед этим должен быть полностью возбужден, т. е. его магнитный поток должен быть номинальным. Напряжение на обмотке возбуждения генератора ГПТ должно быть равно 0. При подаче напряжения на обмотку возбуждения генератора и его увеличении, он будет развивать ЭДС, появится напряжение на якоре ДПТ и последний будет разгоняться. При номинальном возбуждении генератора напряжение на якоре ДПТ номинальное.

В случае гонного АД с увеличением нагрузки на валу приводного ДПТ возрастает тормозной момент ГПТ, что приводит к снижению скорости гонного АД, следовательно, снижению скорости ГПТ и его ЭДС, что сказывается и на скорости ДПТ. В мощных электроприводах по системе ГД это снижение составляет (1,5¸2)%.

Преимуществом асинхронного гонного двигателя является простота, надежность, малая колебательность. Достоинством гонного синхронного двигателя является его меньшая критичность к колебаниям напряжения сети, возможность работать с опережающим током. Обычно СД используется при мощностях генератора в сотни и тысячи кВт.

Питание обмотки возбуждения ГПТ в современных системах ГД, осуществляется от тиристорного или транзисторного ТВ. Основным видом ТВ является тиристорный преобразователь с раздельным управлением комплектами Вентилей. Зависимость выходного напряжения управления UУ изображена на рис. Ее рабочий участок без особой погрешности можно считать линейным. Динамические процессы ТВ описывается уравнением.

, где

— коэффициент усиления тиристорного возбудителя по напряжению.

Пренебрегая гистерезисом магнитной цепи генератора и считая его ненасыщенным, для линейного участка зависимости EГ=f(UВГ), можно написать:

, где — при wГ=const;

Уравнение механической характеристики двигателя в системе ГД можно получить из уравнения равновесия ЭДС в якорной цепи.

, где еГ и е — соответственно ЭДС генератора и противо ЭДС двигателя.

Читать еще:  Генератор гск 1500 как двигатель

Т. к. , где Ф – поток двигателя

То .

Здесь

Выразив ток iя через момент двигателя получим: или

Здесь b – модуль статической жесткости механической характеристики двигателя в системе ГД.

Уравнение механической характеристики двигателя для статического режима можно представить в виде: или или

Здесь ФНД – номинальный поток двигателя.

Семейство механических характеристик двигателя в системе ГД, соответствующее различным значениям ЭДС генератора при синхронном гонном двигателе, изображено на рис.

Жесткость основной характеристики двигателя

в 2 раза меньше, чем при питанием его от сети с U=const, вследствие того, что в якорной цепи кроме сопротивления якоря двигателя имеется еще и сопротивление якоря генератора, а они

одинаковы, т. к. мощность генератора лишь немногим больше мощности двигателя. Но скорость идеального холостого хода, двигателя в разомкнутой системе ГД больше, чем при питании двигателя от сети с U=const, т. к. номинальная ЭДС генератора, определяющая w0 двигателя, больше, чем номинальное напряжение двигателя, определяющее w0 при питании его от сети, т. е.

, ибо

.

Характеристика двигателя при питании его от сети с U=UH изображена пунктиром.

Изменяя поток возбуждения генератора, следовательно, его ЭДС, можно осуществить непрерывное плавное управление моментом и скоростью электропривода во всех 4-х квадрантах координатной системы при b=const. На рис. показано в 1-м квадранте семейство характеристик при ЕГ=var. В разомкнутой системе ГД за счет изменения ЕГ можно получить диапазон регулирования скорости двигателя примерно 10:1. Изменяя же поток двигателя, можно увеличить скорость примерно еще в 3 раза. Т. о. общий диапазон регулирования скорости в такой системе примерно 30:1. На рис. показаны характеристики двигателя и в зоне изменения ФДВ. Они расположены выше основной и жесткость их изменяется.

Механические характеристики двигателя в системе ГД при асинхронном гонном двигателе будут не параллельны, т. к. при изменении нагрузки на валу приводного двигателя будет изменяться скорость гонного двигателя, следовательно и ЭДС генератора, что сказывается и на скорости приводного двигателя. Обычно непараллельностью характеристик при расчетах пренебрегают.

Двигатель в системе ГД может работать во всех режимах. Двигательному режиму соответствует область, заштрихованная в 1 и 3 квадрантах. Режиму динамическому торможению соответствует одна характеристика, проходящая через начало координат. Режиму противовключения соответствует область между осью моментов и характеристикой динамического торможения во 2 и 4 квадрантах.

Генераторному режиму с рекуперацией энергии в сеть соответствует область во 2 и 4 квадрантах, заключенная между осью скоростей и характеристикой динамического торможения.

Основным способом торможения двигателя в системе ГД является торможение с отдачей энергии в сеть. Если уменьшать или снять возбуждения генератора, то ЭДС двигателя станет больше ЭДС генератора. Двигатель превратиться в генератор. Ток в якорной цепи определяемый разностью: изменит направление на противоположное. Генератор превратиться в двигатель, работающий с ослабленным магнитным потоком. Скорость его увеличится и он будет раскручивать гонный двигатель со сверхсинхронной скоростью. Гонный двигатель превращается в генератор. Он будет отдавать в сеть активную энергию, потребляя из сети реактивную энергию.

Кинетическая энергия вращающихся инерционных масс приводным двигателем преобразуется в электрическую, поскольку он теперь работает генератором. В сеть отдается эта энергия за исключением потерь, имеющих место во всех элементах электропривода.

С помощью приведенных выше уравнений динамики для цепи возбуждения генератора, тиристорного возбудителя, уравнения механической характеристики двигателя и уравнения движения электропривода при жестких механических связях, можно построить структурную схему системы ГД, которая имеет вид.


Отпираясь на ранее сделанный анализ переходных процессов в эл. приводе с линейной механической характеристикой при или , можно сказать, что если изменять UУ по закону, обеспечивающему линейное нарастание ЭДС генератора, то в системе ГД и зависимости и будут иметь при прочих равных условиях тот же характер, как и в случае . Отличие структуры системы ГД от рассмотренной ранее структуры разомкнутой системы является наличие в цепи формирования управляющего воздействия 2-х инерционных звеньев с постоянным ТТВ и ТГ=ТВ. При вентильном возбуждении ТТВ@0,01с, а ТВ=(1¸4)с. Поэтому величиной ТВ можно пренибречь и структурную схему системы ГД представить в виде:


Из нее следует, что при изменении управляющего воздействия скачком ЭДС генератора и скорость w0 двигателя в системе ГД изменяются по закону, определяемому переходной функцией апериодического звена с постоянной ТГ=ТВ.

Достоинства системы ГД:

1. Отсутствуют громоздкие пусковые реостаты и потери в них.

2. Управление процессами перенесено в цепи возбуждения, имеющие небольшие токи, что облегчает и удешевляет аппаратуру.

Читать еще:  Isuzu forward какой двигатель

3. Сравнительно высокий диапазон регулирования.

Недостатки системы ГД:

1. Высокая установленная мощность, превышающая в 3 раза мощность приводного двигателя.

2. Сравнительно низкий КПД, равный .

3. Повышенная крутизна механических характеристик.

4. Высокая первоначальная стоимость машинного оборудования.

Остов тягового двигателя

НАЗНАЧЕНИЕ: является корпусом двигателя и одновременно магнитопроводом.

УСТРОЙСТВО: остов литой конструкции, круглый, изготовлен из электротехнической стали, средняя часть утолщена. На остове расположено 12 рядов из 3-х отверстий для болтов крепления полюсов. С боков у остова полукруглые приливы для установки и крепления моторно-осевых подшипников, а с противоположной стороны – прилив для крепления кронштейна маятниковой подвески. В верхней части остова расположен прилив для клеммной коробки, в которой смонтированы выводы обмоток, закрытые крышкой с уплотнением. По торцам остова находятся круглые расточки для подшипниковых щитов, которые по периметру имеют отверстия: резьбовые для болтов крепления щитов, два отверстия 1 для стопорных болтов и отверстие 2 для фиксаторного болта которыми крепится траверса. В верхней части находится валик с шестерней 3 для поворота зубчатой траверсы. Со стороны коллектора находятся два смотровых люка закрытых крышками с войлочными уплотнениями. Верхняя крышка снабжена пружинным замком и легко снимается. Вверху остова, со стороны коллектора расположен прямоугольный прилив для крепления воздуховода, подходящего от кузова, а с другой стороны прилив для кожуха, через который выбрасывается воздух после охлаждения ТЭД. На остове имеются кронштейны с отверстиями для крепления кожухов зубчатой передачи и для транспортировки и крепления предохранительной планки от падения на путь. В нижней части остова есть два сливных отверстия диаметром 20 мм.

Подшипниковые щиты

НАЗНАЧЕНИЕ: служат для установки подшипников, в которых вращается вал якоря.

УСТРОЙСТВО: щиты литые, с внутренней стороны снабжены ребрами жесткости. По наружной окружности имеют обточки для установки с натягом в остов и ряд отверстий для болтов крепления, а также три резьбовых отверстия для выпрессовки щита из остова.

Средняя часть щитов уширена, имеет лабиринтные уплотнения с кольцами 4 и 6, которые напрессованы на вал якоря. В средней части имеется расточка для установки в ней наружной обоймы якорного роликового однорядного подшипника, а по окружности отверстия для болтов. В щитах имеются каналы с трубками, для добавления смазки.

В нижней части, под подшипником имеется камера Г, закрытая крышкой 3, она сообщается каналом Б с полостью подшипника В для стекания отработанной смазки, которая удаляется при ремонте. Смазка ЖРО или «Буксол», заполняется на 2/3 объема камеры. В подшипниковом щите со стороны коллектора (а), в верхней части находятся два овальных отверстия закрытых крышками для демонтажа и монтажа изолированных пальцев щеткодержателей. В щите с другой стороны (б), вверху находятся два отверстия закрытых кожухом для выброса воздуха под кузов после охлаждения ТЭД. В обеих щитах сделаны резьбовые отверстия под кронштейны нижней половины кожуха.

Главный полюс

НАЗНАЧЕНИЕ: служит для создания основного магнитного потока, который пересекает обмотку якоря и сердечник.

УСТРОЙСТВО: электромагнит состоит из сердечника и катушки.

Сердечник 3 выполнен шихтованным и набран из отдельных листов электротехнической стали толщиной 0,5 мм, крайние листы сердечника утолщены. В листах сердечника имеется квадратное отверстие 45 Х 45 мм, семь круглых отверстий для шпилек и с внутренней стороны шесть наклонных вырезов 13 Х 44 мм. Сердечник набирается на шпильках, в среднее квадратное отверстие запрессовывается квадратный стержень с тремя резьбовыми отверстиями М30. После сборки сердечника, концы шпилек расклепываются, а вырезы листов образуют шесть наклонных пазов для укладки активных сторон компенсационной обмотки.

Катушка 1 состоит из 11 витков шинной меди 4 Х 65 мм, намотана на узкое ребро (плашмя) и изогнута по радиусу остова. Имеет межвитковую, корпусную и покровную (защитную) изоляцию. Катушка надевается на сердечник, между сердечником и катушкой укладывается предохранительный фланец 4, который не допускает повреждение изоляции, также укладывается уплотняющий клин 2, который не допускает ослабление катушки на сердечнике.

Сердечник крепится к остову 3-я болтами М30. Головки крепительных болтов заливаются гудроном, чтобы не попадала влага в сердечник полюса.

Катушки главных полюсов соединяются последовательно внутри остова, со стороны коллектора. При этом полярность главных полюсов чередуется, образуя обмотку возбуждения, концы которой выведены на клеммную коробку и обозначены буквами «К» — начало и «КК» — конец.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector