Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое динамо в двигателе

Что такое динамо в двигателе

Динамо-машины Электрические машины, экономичность


Рис. 3.16. Цилиндрический линейный двигатель постоянного Тока

пример, В [70]. Это сходство можно увидеть из сравнения рис. 3.16, где изображены схемы конструкции линейных двигателей [110], и рис. 3.17, где показана схема линейного сельсина с цилиндрическим магнитопроводом из [70]. Но цилиндрические линейные двигатели по рис. 3.16 — это машины постоянного тока со своеобразным линейным коллектором (очищенным от изоляции полоской на поверхности обмотки якоря). Якорь 1 неподвижен, а движущийся экипаж 3 представляет собой устройство с рабочим магнитным полем. Экипаж центрируется относительно якоря специальными колесами. Сердечник якоря / сделан из магнитомягкой стали. Обмотка 2 — медная с лаковым покрытием. Для питания током часть обмотки якоря, как уже указывалось, очищена от изоляции. Ток подается через щетки 4, установленные на экипаже. Экипаж обеспечивается низковольтным питанием через контактный рельс. Обмотки возбуждения 5 создают рабочее магнитное поле, проходящее через сердечник якоря, воздушный зазор и полюса 6 экипажа. Ток, текущий по обмотке 2 якоря.

6-0 Рис. 3.17. Цилиндрический линейный сельсин

Таблица 3.6. Сравнительные характеристики линейных двигателей

Цилиндрический ЛАД НЭТИ

6 (постоянный ток)

фя длина подвижной части

внешний диаметр, м

Плошадь зазора, м

Линейное перемещение, м

Выходная мощность, Вт, при скорости, м/с: 1 2

Удельное усилие при ПВ=40%,

Усилие (ПВ = 40%), Н, при скорости, м/с: 0

13,7 18,76 12 10,8

Удельная масса, кг/Н

перпендикулярно пересекается силовыми линиями магнитного поля, что создает аксиальную составляющую силы вдоль движения экипажа. При движении экипажа ток течет по обмотке якоря короткое время, что позволяет использовать большие плотности тока. Следует указать, что хотя и улучшаются массогабаритные показатели, но существенно снижается КПД машины.

В табл. 3.6, приводятся сравнительные данные близких по параметрам ЦЛДПТ, плоского ЛАД и ЦЛАД [И] по основным удельным показателям, связывающим усилие с габаритными размерами и массой.

Экспериментальные характеристики ЦЛДПТ приведены на ряс. 3.18-3.22. Как видно из рис. 3.18, кривые индукции в -ia-оре весьма близки к типичным для машин постоянного тока.

изкая к прямолинейной зависимость усилия от тока якоря фис. 3.19) характерна для беспазовых машин, к которым отно- Тся и рассматриваемая конструкция со значительным зазором

алым насыщением края полюса.

т 800 1100 1В00

Рис. 3.19. Зависимость усилия от тока якоря у двухполюсной машины при токе возбуждения 490 А

Рис. 3.18. Радиальная индукция у поверхности якоря двухполюсной машины:

а — ток якоря 30 А; б — ток якоря 1800 А

Механические характеристики (рис. 3.20) соответствуют двигателю с независимым возбуждением и невысоким КПД, что объясняется большим отношением падения напряжения на якоре к ЭДС машины.

Разгон машины (рис. Ъ.И) существенно зависит от нагрузки. При возрастании нагрузки вдвое реальная постоянная времени разгона возрастает примерно в 3 раза (с 0,22 с при 6 И до 0,62 с при 10 И), хотя и установившаяся скорость также снижается примерно втрое. Рассмотрение кривых полезной мощности и КПД (рис. 3.22) позволяет сделать заключение, что при одинаковой с ЦЛАД скорости движения в 0,35 м/с полезная мощность рас-


Рис. 3.20. Механические характеристики: / 1440 А/полюс; 2 — 1080 А; 3 —

720 А при разных нагрузках: —

0; Д — 5 Н; — 7,5 Н; X — 10 Н

о,г 0,4 o,s 0,6 1 VV

Рис. 3.21. Характеристика

гона двухполюсной машины Р нагрузках; /-5 Н; 2-7.5 Н: i —

pi; ,3.22. Зависимости полезной мощности (u) и КПД (б) от скорости при;

. ,440 А, .550 Вт. ПВ=15%: 2 — 1080 А, 200 Вт, ПВ = 40%; i — 720 А, 88 Вт. ПВ=

сматриваемого ЦЛДПТ составит при ПВ=40% примерно 4-5 Вт, т. е. существенно ниже рассматриваемых в табл. 3.7 данных для скорости 1-2 м/с. Если при относительно больших скоростях КПД растет (КПД достигает больших значений при больших линейных нагрузках), то на малых скоростях с ростом линейной нагрузки КПД падает. Так, при v = 0,5 м/с и увеличении линейной нагрузки вдвое (с 720 А на полюс до 1440 А на полюс) КПД снижается также примерно вдвое (с 4 до 2%), что неплохо подтверждает нашу рекомендацию: хочешь повысить КПД — снижай плотности тока.

Абсолютные значения КПД (единицы процентов у низкоскоростных ЦЛДПТ малой мощности) вполне соответствуют приведенным выше значениям iicos(j для ЛАД и ЦЛАД соответствующих скоростей и мощностей.

Как показано в [70), конструкция по рис. 3.18 и ее модификации обладают рядом недостатков, особенно при малых полюсных делениях, при малом отношении т/ft. —Действительно, если принять полный период, на котором должны быть размещены три пары катушек и магнитопроводящих колец, равным 3,6 мм, то толщина катушки будет примерно равна 0,6 мм и путь для потока рассеяния (не зависящего от положения плунжера) меж-

двумя соседними магнитопроводящими кольцами будет проводить через зазор около 0,6 мм. В то же время на пути рабочего Потока, зависящего от положения плунжера, будет в несколько раз больший зазор, состоящий из двойной толщины разделительной трубки и двойного зазора между плунжером и трубкой.

Для существенного снижения относительного значения потока Рассеяния при малых т/6 разработана новая, так называемая Реоенчатая многофазная (например, трехфазная) машина, соз-Ющая наибольшую в данных размерах модуляцию индуктив-остей трех катушек при малых перемещениях плунжера. Мак- умы индуктивностей в этих катушках наступают при поло-ниях плунжера, отличающихся на 1/3 (при трех катушках) Рмещения, принимаемого за полный период 2т [58].

в трех парах секторов (части кольца примерно по 60 deg; кажда -из ферромагнитного материала внутренняя поверхность выполня, ется в виде гребенки с шириной зубьев, несколько меньшей 1/ значения, принимаемого за полный период, и расстоянием мелцу центрами зубьев, равным этому периоду. При установке на раз. делительную трубку гребенки смещаются так, что, например зубья первой пары гребенок занимают нижнюю, зубья второе) пары — среднюю и зубья третьей пары — верхнюю треть периодд (соответственно каждые в своем секторе). Катушки наматывают, ся вокруг каждой секторной гребенки аналогично катушкам ста-торных полюсов электрических машин. На плунжере делаются проточки так, что каждый кольцевой зубец плунжера занимает по высоте несколько меньше чем половина периода. Уменьшение высоты зубца плунжера относительно половины периода, как высоты зубца гребенок относительно трети периода, связано явлением расширения потока в кольцевом зазоре. Индуктивность каждой катушки при движении плунжера изменяется, причем полный период изменения соответствует прохождению одного зубца и одного паза плунжера.

Максимумы индуктивностей катушек смещены на треть периода. Поэтому физическая картина изменений потокосцеплений по перемещениям d4/dx или изменений вторичных напряжений для системы синхронного слежения совершенно аналогична той, что имеет место в трех соленоидных системах с большим ходом плунжера.

Применение гребенки с магнитоэквипотенциальными зубьями устраняет рассеяние между ними. Рассеяние имеет место лишь между одной гребенкой и другой по пути, длина которого вполне может быть установлена достаточно большой и не зависит от длины перемещения плунжера. Значительное количество зубцов, действующих параллельно, позволяет получить большое сечение для рабочего потока.

Наружное ферромагнитное кольцо обеспечивает практически замкнутую магнитную цепь, в которой основным магнитным сопротивлением будет рабочий зазор. При этом, хотя сечение зазора для каждой гребенки модулируется плунжером при его движении по периодической кривой, суммарное сечение зазора для всего потока мало меняется. Поток лишь перераспределяется по гребенкам, что создает оптимальную в данном объеме и при заданной толщине разделительной трубки магнитную систему.

Рассмотрим решение этой задачи в конструктивном вариант с модуляцией взаимной индуктивности без обмотки на плунжере путем подведения потока к кольцевым полюсам плунжера извн через часть боковой поверхности разделительной трубки (рис. З.- В этой конструкции часть окружности плунжера занята полюса! 1 и 2 обмотки возбуждения 3. Для гребенок с обмотками синхр низании (вторичные обмотки) остается лишь дуга примерно в 2


Рис. 3.23. Гребенчатая конструкция без обмотки на плунжере

Угол между каждой парой магнитно и электрически соединенных катушек синхронизации составляет 135 deg;, что никак не сказывается на работе системы, кроме некоторого уменьшения объема катушек при том же объеме устройства.

Увеличение количества зазоров на пути потока возбуждения в известной мере компенсируется увеличением объема меди в этой катушке. Полюсы возбуждения не имеют зубьев и служат для наилучшего перехода потока возбуждения к полюсам плунжера.

В тех случаях, когда диаметр плунжера невелик, размещение вокруг него шести гребенок для вторичных катушек и двух негребенчатых полюсов возбуждения оказывается нежелательным. Для таких случаев разработан вариант бесконтактной линейной гребенчатой машины с аксиальным вводом потока. Поток, создаваемый обмоткой возбуждения, проходит практически через всю боковую поверхность плунжера (на участке, расположенном вне гребенок с обмотками синхронизации), входит аксиально в плунжер, через все кольцевые выступы распределяется по трем (для трехфазной вторичной обмотки) гребенкам обмоток синхрони-зацли и замыкается через три внешних магнитопровода.

Вторичные напряжения модулируются не по обычным для сельсинов законам вида а = a,axSin а, а по формулам однополюсных систем ( laquo;гомополярных raquo;) вида а = ао + maxSin а, как в инхронной машине [112] или в бесконтактном сельсине [70]. 0 обстоятельство отрицательно сказывается лишь на излишней сгрузке потоками и токами, пропорциональными во, но не влия-На работу машины.

Указанный недостаток представляется менее значительным, получаемые преимущества: два зазора на пути потока возбуж-ния вместо четырех, большее сечение зазора для рабочего пото-

Динамо машина для велосипеда

У каждого велосипедиста порой возникает потребность в повышении уровня комфорта вождения своего транспортного средства. Для этого используется большое количество разнообразных приспособлений и приборов, которых в большом количестве в настоящее время присутствуют на рынке. Одним из наиболее популярных из них считается динамо машина. Если раньше спрос на нее не был значительным, то сейчас многие любители велосипедов устанавливают данное устройство ввиду того, что оно имеет хорошую функциональность и надежность использования.

Что такое динамомашина, зачем она нужна и как работает

Динамомашина представляет собой особый тип генератора, который способен вырабатывать электрическую энергию из механической работы транспортного средства. Таким образом, вследствие этого, данный прибор используется преимущественно только лишь для питания некоторых устройств велосипеда, таких как:

  • задание фонари;
  • передние фонари;
  • звонок и т.д.

Принцип работы динамомашины заключаются в следующем:

  1. Генераторный ролик соприкасается со стенкой боковой покрышки велосипедного колеса во время движения. Вследствие этого происходит образование магнитных полей, для появление которых требует сила трения. Это в свою очередь приводит к продуцированию электроэнергии с обмоток устройства.
  2. Электричество, которое вырабатывает динамомашина, посредством проводки распространяется ко всем важных приборам велосипеда. Прежде всего это касается передних и задних фонарей.
  3. Для регуляции включения и выключения генератора используется защепка-фиксатор, которая размещается непосредственно на самой динамомашине. К тому же степень трения велосипедист может регулировать в ручном режиме.

Таким образом, можно сделать вывод о том, что чем быстрее человек крутит педали, тем боле интенсивно будет крутиться колеса, что в свою очередь влияет на количество выработанной электроэнергии динамомашиной.

Типы динамо машин

Существует несколько разнообразных типов динамо машин заводского изготовления. Они отличаются друг от друга принципом своей работы, эффективностью, надежностью использования, стоимостью и некоторыми другими факторами. Прежде чем приобрести то или иное устройство, обязательно необходимо оценить все их преимущества и недостатки. В таком случае можно купить именно тот прибор, который лучше всего будет соответствовать, как потребностям велосипедиста, так и его возможностям.

Бутылочная

Динамо машина бутылочного типа, как правило, устанавливается на боковой части передней шины велосипеда. Вместе с тем, ее можно монтировать и на заднем колесе, если в этом есть потребность. Она выполняется в виде небольшого по своим габаритным размерам генератора, который используется для энергоснабжения фонарей транспортного средства и зарядки мобильных устройств.

Читать еще:  Экономные режимы работы двигателя

Для того чтобы отключить бутылочную, достаточно всего лишь воспользоваться откидным механизмом, который позволит ограничить трение между роликом генератора и поверхностью колеса.

Бутылочная динамо машина получило свое названием вследствие того, что она по своему внешнему виду похожа на бутылку. Ее ролик может быть выполнен, как с резины, так и с металла.

Основные преимущества бутылочной динамо машины заключаются в следующем:

  1. Отключенный привод генератора не влияет на сопротивление движению велосипеда. Если он включенный, велосипедисту приходится прикладывать немного больше силы. Это касается даже тех случаев, когда электроприборы подключены.
  2. Простота и легкость установки. Бутылочную динамо машину можно прикрепить к любому велосипеду, независимо от его конструкции и модели.
  3. Небольшая цена. Большинство бутылочных динамо машин имеют незначительную стоимость. Вместе с тем из данного правила все же есть определенные исключения.

Как и любое другое устройство, динамо машина для велосипеда имеет определенные недостатки, такие как:

  1. Сложность настройки. Это обусловлено тем, что очень важно корректно отрегулировать степень трения ролика в колесо. Если велосипед упадет или же его винты ослабнут, генератор может получить те или иные повреждения. Если неправильно осуществить настройку динамо машины, можно спровоцировать слишком большой шум, чрезмерно сильное сопротивление и т.д.
  2. Необходимо применять значительную силу для переключения устройства. Для того чтобы генератор начал работать, необходимо передвинуть его, чтобы он соприкасался с колесом.
  3. Наличие шума. Эксплуатация бутылочной динамо машины для велосипеда всегда сопровождается жужжанием, которое возникает вследствие трения с шиной.
  4. Изнашивание шин. Это происходит вследствие трения валика генератора о нее, что приводит к незначительному, но постоянному повреждению внешнего слоя.
  5. Возникновение сопротивления движению. Его можно уменьшить, если установить ролик генератора правильным образом.
  6. Периодическое проскальзывание. Чаще всего оно возникает в дождливую погоду, когда колесо велосипеда становится влажным.

Таким образом, несмотря на все недостатки, бутылочная динамо машина пользуется в настоящее время существенным спросом.

Динамо втулка

Динамо втулка представляет собой генератор электричества, который устанавливается в свою очередь не на край колоса, а непосредственно в его центре. Таким образом, данный прибор совмещает в себе две функции.

Основные преимущества динамо втулок заключаются в следующем:

  1. Отсутствие шума. Прибор работает практически без какого-либо постороннего звука, отвлекающего во время движения.
  2. Простая конструкция без подвижных частей. Вследствие этого не возникает трения. Это обусловлено тем, что магнит с большим количеством полюсом устанавливается вокруг катушки без соприкосновения ротора и статора.
  3. Отсутствие необходимости в осуществлении контроля за сцеплением или же герметизацией. Погода при этом никак не влияет на выработку электроэнергии.
  4. Низкий уровень износа покрышки и автоматическое включения из-за наличия постоянного привода.

Недостатки динамо втулок, на которые стоит обратить внимание перед покупкой, следующие:

  1. Немного больший вес вследствие наличия магнитов.
  2. Постоянное подключение прибора к фаре приводит к включениям и выключениям света, что некоторые велосипедисты считаются все же преимуществом.
  3. Меньшая нагрузка на оптические приборы, что увеличивает срок их эксплуатации.
  4. При установке обязательно необходимо менять спицы в колесе, снимая его. Поэтому такая работа для некоторых людей становится слишком сложной и продолжительной.
  5. Устройство генерирует переменный ток, который можно преобразовать с использование специальных диодов.

Динамо-втулки тоже пользуются значительной популярностью. Именно поэтому они имеют такой же спрос на рынке, что и бутылочные устройства.

Сравнительная резюмирующая таблица

Ниже в таблице можно наглядно оценить основные отличительные особенности бутылочной динамо-машины и динамо-втулки.

Альтернатива динамовтулке

Установка педали велосипеда

Перед тем как устанавливать новую педаль, резьбу оси следует очистить от грязи, протерев чистой тряпкой, а также смазать смазкой. Благодаря таким нехитрым действиям педали смогут плавно стать на место, а их последующее снятие пройдет без особых проблем.

Процесс установки педали:

  1. Берем правую педаль и устанавливаем на место, закручивая ее по часовой стрелке. Для начала лучше закручивать руками. Так вы минимизируете риск повреждения резьбы в случае, если педаль встанет не ровно.
  2. Берем ключ и сильно затягиваем педаль.
  3. Устанавливаем левую педаль, закручивая ее против часовой стрелки.
  4. Для того чтобы в процессе езды педали самопроизвольно не откручивались, оба узла нужно хорошо протянуть ключом.

Процесс замены педали велосипеда завершен. Приятных вам поездок!

Если у вас остались вопросы, ознакомьтесь с данным видео-обзором. Он поможет вам лучше понять процесс замены педалей и не допустить ошибок.

Подключать к динамо-втулке одну или две фары?

На скорости выше 25 км для питания двух последовательно подключённых фар можно использовать любые динамо-втулки. Многие велосипедисты, любящие велопробеги на длинные дистанции, используют две фары. Если двумя фарами можно обеспечить хорошее освещение, то дополнительный вес и сопротивление не столь важны. Одиночная фара E6 обеспечивала достаточное освещение даже на тандеме во время веломарафона Париж-Брест-Париж на скорости 70 км/ч на незнакомых, требующих напряжения дорогах. Те, кто всё же решил установить две фары, могут извлечь небольшую выгоду от использования динамо-втулки модели SON20, обладающей более низким сопротивлением.

Положительные и отрицательные качества динамо втулок

Преимуществами динамо втулок являются:

  • бесшумность;
  • отсутствие подвижных частей и трения соответственно. Установленный кольцевидный магнит с многими полюсами вращается вокруг катушки без соприкосновения ротора и статора.
  • нет необходимости в контроле сцепления, герметизации и других сложностях. Погода не влияет на качество светового потока;
  • не изнашивается покрышка;
  • такая втулка включается автоматически, на постоянном приводе.
  • у динамо втулок, в отличие от «бутылок», велосипедная рама не является «землёй», или частью минусовой цепи. Она изолирована. Поэтому может использоваться как «минус» при навеске другого оборудования.

Недостатки динамо втулок следующие:

  • несколько больший вес (за счёт магнитов);
  • постоянное подключение такого устройства к фаре приводит к постоянному включению света при движении (для некоторых велосипедистов это является плюсом, так как повышает их видимость и безопасность);
  • фара больше нагружается и меньше служит;
  • при установке требуется переспицовка колеса, так называемое «динамо колесо». Кроме того, «родные» спицы могут не подойти, так как нужно ставить более короткие. Посмотрите, насколько больше динамо втулка, чем «родная»;
  • динамо втулки генерируют переменный ток, его нужно выпрямлять с помощью диодов.

Если сравнивать бутылочные динамки с втулочными, то втулки лучше светят на низкой скорости, за счёт более низкой частоты переменных токов.

Испытательный стенд.

Протестировано три генератора (слева направо): Busch + Müller
Dymotec6, AXA HR и один дешёвый китайский.

  1. У B&M Dymotec6 хорошая механика. Она хорошо бежит по покрышке. Её часто можно встретить на качественных туристических велосипедах. В 2004 году эту динамо-машину купить можно было за 24.90 евро.
  2. AXA HR оснащена сильными магнитами. Из всех протестриованных генераторов даёт наибольший ток. Для ограничения выходного напряжения предусмотрено два последовательно подключенных опорных диода (BZX 85C 7V5). Перед проведением измерений вскрыли пластмассовый корпус и удалили эти диоды. Её часто устанавливают на велосипеды известных производителей. Цена AXA HR 16.99 евро.
  3. У дешёвой китайской динамо-машины магнитные характеристики немного хуже чем у Dymotec6. Механика не рассчитана на интенсивное использование, но она соотвествует всем нормам. Она скреплена двумя винтами и её можно полностью разобрать. Ею обычно комплектуют «ашанбайки». Она может пригодится велосипедистам редко катающимся в темноте, так как её можно купить всего за 3.45 евро.

Сборка динамо

Динамо-машина своими руками собирается в несколько этапов:

  1. Для основания подготовим доску размером 150х200 мм, толщиной 30 мм. Просверлим два отверстия с краев кольца электромагнитов.
  2. Крепим корпус к основанию двумя шурупами так, чтобы электро­магниты расположились на одной горизонтальной линии напротив друг друга.
  3. К бо­кам корпуса, чтобы он прочно сидел, подкладываем деревянные брусочки и привинчиваем их к основанию.
  4. Затем через подшипник на корпусе пропускаем свободный конец оси якоря. Вставляем его на место между электромагнитами.
  5. На подшипник подшипниковой стойки с внутрен­ней стороны надеваем щеткодержатель со щетками и вставляем конец оси якоря с коллектором. На коллектор предварительно должна быть надета толстая металли­ческая шайба или кольцо из проволоки.
  6. Устанавливаем якорь так, чтобы он при вращении между электромагнитами, не задевал их и находился от них на одном расстоянии. Стойка крепится на основание двумя шурупами.

Изготовление коллектора и щеткодержателя

При сборке динамо-машины, в частности коллектора и щеткодержателей, требуется внимание и аккуратность

Коллектор можно изготовить из трубки (медь, латунь) или собрать из пластин. Потребуется трубка диаметром 20-25 мм и длиной 25—30 мм, которая распиливается на 4 равные части. В пластинах просверливаются по два двухмиллиметровых отверстия.

Затем вырезаем цилиндр (диаметр 20-25 мм, длина 25 мм) из фибры или эбонита, подойдет и сухое дерево. В центре цилиндра делаем отверстие, чтобы он плотно мог войти на ось якоря. Пластинки крепим к цилиндру с помощью мелких шурупов, каждый раз оставляя между ними пространство в 1-2 мм. Можно использовать скрутки из проволоки и изоляционную ленту. Шурупы не должны касаться оси, иначе будет замыкание. Зазоры между пластинами заполняем канифолью.

Щеткодержатель со щетками применяется для снятия напряжения в коллекторе. Щетки должны выдвигаться и поворачиваться вокруг оси якоря, чтобы менять силу и угол нажима на коллектор. Основание толщиной 10 мм изготовим из фибры, эбонита или пропарафиненного дерева. Просверлим в нем три отверстия, чтобы для двух крайних подошли болты. Берем болты из меди или радиоконтакты по 35 мм. Болтики, закрепляющие щетки, вкручиваем с гайками для зажима.

Отверстие в центре должно быть равно диаметру трубки из меди, которая использовалась для первого подшипника в корпусе. Напротив центрального отверстия в торце колодки просверливаем сквозное отверстие и делаем нарезку под крепящий винт. Берем винт (для дерева – шуруп) с прорезью или гранями на головке. Делаем отверстие чуть меньше диаметра винта, вворачиваем винт. Сначала на 2-3 оборота ввернуть, потом вывернуть, повторяя до тех пор, пока он не будет свободно входить на три оборота. Затем точно также винтом обрабатываем следующий проход.

Делаем подшипниковую стойку, в верхнем конце которой просверливаем отверстие, вставляем отрезок медной трубки и припаиваем. Щетки можно сделать разными способами, из медных, латунных пластин или приготовить угольные щетки. Это могут быть пластины длиной 40-50 мм с сечением 10-15 мм. На конце щетки просверливаем продолговатое сквозное отверстие длиной 20 мм под болтики. Такое отверстие позволит менять нажим, приближая щетки к коллектору. Крепим щетки шайбами. Чтобы щетки плотно касались коллектора, затачиваем их концы наискось.

Установка планетарной втулки на обычную раму с вертикальными дропаутами.

Планетарные втулки Shimano Nexus изначально не предназначены для установки на велосипеды с вертикальными дропаутами. Стопорные шайбы, поставляющиеся со втулкой, имеют ориентацию, которая не позволяет установить их на обычную раму с вертикальными дропаутами. Ранее в своих инструкциях Shimano указывало, что их втулки не могут устанавливаться на такие рамы. Но со временем Shimano передумала и теперь производит дополнительный комплект стопорных шайб, устанавливаемых на рамы с вертикальными дропаутами. При установке планетарных втулок Shimano Nexus на рамы с вертикальными дропаутами дополнительно потребуются подпружиненный натяжитель цепи роликового типа с задним переключателем или каретка с эксцентриком, так как вертикальные дропауты не допускают перемещения оси вперед и назад, необходимого для регулировки провисания цепи.

Втулка Nexus с ножным тормозом будет работать на раме с вертикальными дропаутами, только имеющей каретку с эксцентриком, а не натяжитель цепи или задний переключатель. Это из-за того, что при обратном вращении педалей на нижнем пробеге цепь подвергается чрезмерному натяжению.

Использование динамо-втулок для колёс малого диаметра с большими колёсами.

Большинство фар велосипеда спроектированы в соответствии с законами Германии, которые требуют обеспечения мощности велофары 0,75 ватт на скорости 5 км/ч и 2,7 ватт на скорости 15 км/ч. Эти законы разработаны для немецких велосипедистов путешествующих на короткие дистанции с низкой скоростью, а не для заядлых гонщиков. Многие велосипедисты редко путешествуют со скоростью ниже, чем 15 км/ч, так что они могут решить, что им не нужно полное освещение на скорости ниже 15 км/час.

Читать еще:  Что такое безгильзовые двигатели

При использовании модели SON20 с колесами 700C или 650B вместо колес 20″, для которых она была разработана, уменьшается выходная мощность, но также уменьшается сопротивление. Большое колесо вращается медленнее, чем колесо 20″, для которого и был создан генератор.

Результаты испытаний показали, что таким образом можно сэкономить драгоценную энергию. В течение четырёх лет я использовал модель динамо-втулки SON20 с колёсами 700C и 650B. На очень крутых подъемах свет начинал дрожать. Но на низкой скорости, мне не нужно было так много света, чтобы видеть дорогу. Для тех, кто ездит в черте города на оживлённых дорогах, модель SON28 может быть предпочтительна, так как даже на низкой скорости велосипед остаётся видимым для другого транспорта.

Начиная с конца 2005 года специализированная модель SON-XS (для складных велосипедов с узкими вилками) доступна для стандартного дропаута 100 мм. Хотя эффективность этой модели ниже примерно на 2%, чем у модели SON20, она весит на 179 грамм меньше за SON20, имеющую вес 398 грамм. Тем не менее более узкий фланцевый промежуток (40 мм, вместо 58 у стандартной SON) и ось из алюминиевого сплава (вместо нержавеющей стали) в итоге ослабляют переднее колесо и делают непригодным для жёсткой езды.

Преимущества и недостатки «бутылочной» динамки

Динамка могла щелчком руки (или ноги) фиксироваться к покрышке сбоку, и фонарь тотчас же вырабатывала свет.

Недостатки такой динамомашины были следующее:

  • сравнительно большая масса, крепящаяся асимметрично на вилку(около 200-250 г);
  • шум ротора динамо генератора, постоянно сопутствующий движению;
  • недостаточная мощность,фара светила тускло, так как была установлена обычная лампочка от карманного фонарика;
  • ощутимое сопротивление движению, особенно на подъёмах;
  • при дожде или попадании на покрышку грязи, эффективность динамо резко снижалась из-за проскальзывания и недостаточного сцепления поверхностей;
  • так как во включённом состоянии постоянно головка динамки соприкасается с боковой поверхностью покрышки, то покрышка истирается значительно быстрее, чем при обычном режиме езды;
  • практически перед каждой поездкой нужно было проверять регулировку динамки – так как максимальное напряжение динамо генератор вырабатывал только при соприкосновении головки с покрышкой при определённых условиях, таких, как давление, угол наклона генератора и высота расположения головки. После каждого падения, естественно, нужно было проверять регулировку;
  • наконец, бутылочная динамо машина может сместиться с места фиксации и попасть в спицы велосипеда.

Однако у неё были определённые достоинства, такие, как:

  • возможность её отключения (с исчезновением сопротивления и шума);
  • более лёгкая установка на уже купленный велосипед, чем динамо втулки, о которых разговор будет ниже;
  • дешевизна бутылочной динамомашины.

Сильнее всего раздражало ощущение необходимости постоянно двигаться быстро для получения яркого пучка света, невзирая на шум и ощущение сопротивления. Сопротивление было таким, как будто постоянно слегка прижимается тормозная ручка.

Установка динамо втулки

При установке бутылочного генератора трудностей не возникает, а вот втулка генератор для велосипеда, заставит вас поработать.

Прежде всего, поскольку сама конструкция такого генератора предусматривает установку в качестве несущей втулки, колесо придется снять и полностью разобрать. Предварительно позаботьтесь о комплекте укороченных спиц. После полной разборки, укрепите короткими спицами обод на втулке. Старайтесь ровно и равномерно установить, постепенно натягивая спицы, а после, подтягивая, укрепить обод окончательно. Затем необходимо сделать балансировку и проверить на биение и дисбаланс.

Кто изобрел динамо-машину и как она устроена?

В 1831 году английский физик Фарадей обнаружил необычное электромагнитное явление. В медном проводе во время вращения между магнитными полюсами возникало электромагнитное поле. Именно оно возбудило движение электронов по проводнику. На основе исследований физик сформулировал закон электро­магнитной индукции. Проводником служила медная проволока, накрученная на стержень из металла, обладающий магнитным свойством. Когда магнитные частицы в стержне располагались в соответствии с полюсами, он превращался в магнит и притяги­вал к себе металлические предметы. Чтобы намагнитить стержень, можно использовать катушку или постоянный магнит. Эффект возникнет при силь­ном вращении одного электромагнита вокруг другого.

В том же году появился прибор для преобразования электрической энергии в механическую. Первые электродвигатели напоминали паровые машины: только вместо цилиндров устанавливали электромагниты, вместо поршней – металлические якоря.

В 1834 году русский академик Борис Якоби создал первый электродвигатель с вращающимся якорем. Через 4 года академик применил усовершенствованный электромотор на первой в мире моторной лодке. Первый в мире генератор переменного тока был построен Павлом Яблочковым. А поистине революционным стало изобретение другого русского ученого М. Доливо-Довольского – генератор трехфазного тока.

Первые электрогенераторы и принцип динамо

АЛЕКСАНДР МИКЕРОВ, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ»

Рис. 1. Диск Фарадея

В предыдущих статьях данного цикла рассматривались первые электрические двигатели, созданные в начале XIX века с питанием от единственного известного источника – гальванической батареи [1 — 3]. Низкая экономическая эффективность такого электрохимического источника, препятствующая замене паровых двигателей электрическими, заставляла изобретателей искать другие, электромеханические способы генерации электроэнергии. В данной статье отражен процесс создания электрогенераторов постоянного тока, в результате которого было открыто явление самовозбуждения за счет положительной обратной связи, называемое принципом динамо.

Первый электромеханический генератор был предложен Фарадеем в 1832 г. сразу после открытия им закона электромагнитной индукции (рис. 1) [4, 5]. Диск Фарадея содержит: статор в виде подковообразного магнита – 1 и медный диск (ротор) – 2, снабженный подвижными контактами на оси и ободе.

При вращении диска в магнитном поле в нем наводится ЭДС постоянного знака, вызывающая индукционные токи, текущие по правилу правой руки радиально, т. е. между осью и ободом (в данном случае, снизу вверх). По правилу Ленца индукционные токи создают магнитный поток, препятствующий потоку магнита, т. е. направленный вдоль оси вращения диска. Это единственный известный униполярный генератор постоянного тока, применяемый для выработки больших токов до сих пор. Остальные генераторы постоянного тока являются, по существу, генераторами переменного тока с выпрямителем (коммутатором) на выходе.

Рис. 2. Генератор Пикси

Первый генератор переменного тока был построен во Франции мастером Ипполитом Пикси (Hippolyte Pixii) в том же 1832 г. [4 — 7]. За свою короткую жизнь в 27 лет Пикси создал много научных приборов, включая дилатометрический термометр и вакуумный насос. Генератор Пикси показан на рис. 2, где обозначены: 1 – статор с двумя катушками, включенными последовательно, 2 – ротор с постоянным магнитом, 3 – щеточный коммутатор (выпрямитель). Силовые линии вращающегося магнита пересекают обмотку катушек, наводя в них ЭДС, близкую к гармонической. Идея катушек и вращающегося магнита принадлежит изобретателю, приславшему письмо Фарадею, подписанное латинскими инициалами P.M. Вероятное имя изобретателя – Фредерик Мак Клинток (Frederick Mc-Clintock) – долгое время оставалось неизвестным [7]. Фарадей незамедлительно опубликовал это письмо в научном журнале. Однако это устройство генерировало переменный ток, тогда как в начале XIX века применялся только постоянный ток. Поэтому Пикси по совету Ампера снабдил его щеточным коммутатором. Генератор Пикси использовался Э. Х. Ленцем для доказательства открытого им в 1833 г. принципа обратимости электрической машины. Однако еще долго двигатели и генераторы развивались по отдельности.

При создании высоковольтного дистанционного взрывателя морских мин в 1842 г. [2] Якоби предложил поместить магниты на статоре, а обмотку на роторе, что повысило компактность генератора. Генератор Якоби представлен на рис. 3 [4 — 6], где обозначены: 1 – статор с двумя постоянными магнитами, 2 – вал, 3 – якорь (ротор с обмоткой), 4 – коммутатор, 5 – мультипликатор, т. е. повышающий редуктор для увеличения скорости вращения ротора.

Рис. 3. Генератор Якоби

Аналогичную конструктивную схему имел генератор, предложенный английским инженером Фредериком Холмсом (Frederick Holmes) для питания запатентованной им дуговой лампы. Для серийного производства генераторов в 1856 г. была создана компания «Альянс» [5, 6]. Вид генератора представлен на рис. 4, где: 1 – статор с постоянными магнитами; 2 – ротор с обмоткой (якорь); 3 – центробежный регулятор, 4 – механизм сдвига щеток.

В нем использовался центробежный регулятор Уатта для автоматического поддержания выходного напряжения путем сдвига щеток с нейтрали при изменении нагрузочного тока, что обеспечивало компенсацию реакции якоря. Генератор имел 50 постоянных магнитов, развивал мощность 10 л.с. при весе до 4 тонн. Всего было выпущено более 100 генераторов «Альянс», применявшихся, помимо дуговых прожекторов маяков, и в гальванопластике.

Рис. 4. Генератор «Альянс»

В эксплуатации у машин с постоянными магнитами обнаружился неприятный недостаток снижения выходного напряжения из-за постепенного размагничивания магнитов от вибрации и старения. Другим недостатком возбуждения от постоянных магнитов была невозможность регулирования их магнитного потока для стабилизации генерируемого напряжения. Для борьбы с этими недостатками предлагалось применить электромагнитное возбуждение, обеспечивающее к тому же, как отмечалось в статье [3], большую компактность. Так, преуспевающий английский изобретатель Генри Уайльд (Henry Wilde) получил в 1864 г. патент на генератор с отдельным маломощным возбудителем на постоянном магните, установленном на общем валу с генератором [4 — 6]. Уайльд не имел университетского образования, начинал свою карьеру учеником механика, но ему удалось наладить производство своих генераторов для гальванопластики. Тем не менее, становилось ясно, что наличие постоянных магнитов в генераторах – серьезный тормоз развития телеграфии и электрического освещения.

Кардинальное решение проблемы появилось после открытия возможности самовозбуждения генераторов, названного Сименсом динамоэлектрическим принципом, или принципом динамо [4 — 7]. Идея самовозбуждения состоит в том, что – как показано на рис. 5 – начальный поток возбуждения при пуске машины создается остаточной намагниченностью магнитопровода, где напряжение генератора снимается с обмотки якоря Я, а возбуждение машины выполняется либо обмоткой ОВ1, включенной последовательно с нагрузкой Rн, либо обмоткой ОВ2, включенной параллельно якорю через регулировочный резистор R (так называемое шунтовое возбуждение). Далее поток возбуждения увеличивается за счет положительной обратной связи от генерируемого тока.

Рис. 5. Схема генератора с самовозбуждением

Одним из первых на возможность самовозбуждения генератора указал в патенте 1854 г. датский инженер и организатор железнодорожного сообщения Сорен Хиорт (S?ren Hjorth). Однако, опасаясь слабости остаточной намагниченности, он дополнил генератор постоянными магнитами. Этот генератор Хиорта так и не был реализован. Независимо от Хиорта идею самовозбуждения высказал в 1856 г. профессор Будапештского университета Аньеш Йедлик (?nyos Jedlik). Он также предложил один из первых электродвигателей, описанный в статье [1]. Однако Йедлик своих изобретений не патентовал и сведения о них публиковал весьма скупо, поэтому его новаторские предложения остались незамеченными.

Практически идея самовозбуждения была реализована лишь через десять лет в одно и то же время несколькими изобретателями. В заявке на патент в декабре 1866 г. инженер английской телеграфной компании, ученик Фарадея Самюэль Варлей (Samuel Alfred Varley) предложил схему генератора, аналогичного генератору Якоби, в котором, однако, обмотка возбуждения заменяла постоянные магниты. Схема генератора показана на рис. 6, где: 1 – электромагниты возбуждения, 2 – якорь, 3 – коммутатор, 4 – добавочный регулировочный резистор. Перед пуском сердечники возбуждения намагничивались постоянным током.

Рис. 6. Генератор Варлея

Через месяц, в январе 1867 г., в Берлинской Академии наук был представлен доклад известного немецкого изобретателя и промышленника Вернера Сименса (Werner Siemens) с подробным описанием генератора с самовозбуждением, названного им динамо-машиной. Перед пуском генератор включался как двигатель для намагничивания возбуждения. Впоследствии Сименс наладил широкий промышленный выпуск таких генераторов в Германии.

Читать еще:  Что является двигателем торговли

В феврале того же 1867-го г. известный английский физик Чарльз Уитстон (Charles Wheatstone) запатентовал и продемонстрировал генератор с шунтовым возбуждением (рис. 5). Владелец мастерской музыкальных инструментов, перенявший дело от своего отца, впоследствии профессор Королевского колледжа King’s College в Лондоне, Уитстон известен также своими изобретениями метода измерения сопротивления (мост Уитстона), однофазного синхронного электродвигателя, музыкального инструмента концертино, стереоскопа, хроноскопа (электрического секундомера) и усовершенствованного вида телеграфа Шиллинга.

В печати возникла дискуссия о приоритете данного технического решения, на который претендовали также Уайльд и Хиорт. Следует отметить, что существует три вида приоритета: научный, патентный и промышленный. Научный приоритет принадлежит ученому, впервые опубликовавшему или публично продемонстрировавшему какое-либо устройство, эффект или теорию. Промышленным приоритетом владеет лицо или компания, впервые наладившие производство изделия и его широкое внедрение. Например, при открытии радио научный приоритет принадлежит Попову, а патентный и промышленный – Маркони. Относительно генератора с самовозбуждением следует признать патентный приоритет за Варлеем, научный – за Йедликом и Сименсом, а промышленный – за Сименсом. Уитстону же принадлежит приоритет в частном, хотя и весьма важном, техническом решении – шунтовом возбуждении.

Дальнейшее улучшение характеристик динамо-машины было связано с изменением конструкции ее якоря путем применения в 1867 г. бельгийским электротехником Зиновием Граммом (Zenobe Gramme) кольцевого якоря, а затем внедрением барабанной намотки, предложенной в 1872 г. Гефнером Альтенеком (Hefner Alteneck), ведущим конструктором компании Сименс-Гальске [5 — 7]. После этого электродвигатели и генераторы практически приняли современный вид. Однако к концу XIX века в связи с широким внедрением систем переменного тока основная доля электроэнергии на гидро- и тепловых электростанциях вырабатывалась уже генераторами переменного тока.

Рис. 7. Модель геодинамо

Что касается самого принципа динамо, то о нем снова вспомнили уже в ХХ веке для объяснения причин земного магнетизма, которое Эйнштейн в 1905 г. назвал одной из пяти главных загадок физики того времени [8, 9]. До сих пор окончательного ответа, подтвержденного компьютерным моделированием или физическими экспериментами, не получено, но наиболее популярной является теория, называемая гидромагнитным динамо (геодинамо). Еще со времен Уильяма Гильберта (конец XVI века) установлено, что Земля – это гигантский магнит, силовые линии которого направлены от южного полюса к северному. Согласно уравнениям Максвелла, магнитные потоки могут создаваться только токами, поэтому естественно было предположить, что Земля – это электромагнит, токи которого текут в плоскостях, параллельных экватору, а сердечником служит твердое ферромагнитное ядро Земли, показанное на рис. 7, с предполагаемым вертикальным расположением оси вращения Земли. Это железоникелевое ядро (1) диаметром около 1200 км окружено жидкой оболочкой (2) из тех же металлов толщиной 2300 км, за которым следуют горные породы мантии и коры Земли.

Если предположить, что вследствие вращения Земли (3) в жидкой оболочке ядра образуются концентрические течения в плоскостях, параллельных экватору (на рисунке не показаны), то в них могут индуктироваться токи за счет пересечения силовых линий (4) магнитным потоком от твердого ядра – как в генераторе Фарадея. Однако твердое ядро принципиально не может быть намагниченным, поскольку его температура, вызванная термоядерными реакциями, выше 5000 о С (как на поверхности Солнца), а все ферромагнитные материалы теряют свои магнитные свойства выше точки Кюри (около 750 о С). Кроме того, ученые не могли предложить разумного объяснения причин образования таких концентрических течений. Поэтому в настоящее время принята более сложная модель, называемая конвективным геодинамо.

Температура поверхности жидкого ядра на границе с мантией (5) примерно на 600 о С ниже температуры твердого ядра, что вызывает радиальные конвективные потоки жидкости (6), которые под действием кариолисовых сил, вызванных вращением Земли, закручиваются в вихри (7), ось вращения которых совпадает с осью вращения Земли. Далее в этих жидких вихрях, аналогично диску Фарадея, индуктируются токи, создающие магнитные потоки (4) вдоль оси вращения Земли.

Более сложным является вопрос о первоначальном образовании магнитного поля Земли. В 1919 г. ирландский физик и математик Джозеф Лармор (Joseph Larmor), выпускник Кембриджского университета, один из создателей теории электрона и основателей релятивистской теории, предложил для его решения идею самовозбуждения, аналогичного процессу в динамо-машине. Необходимая первоначальная намагниченность мантии Земли могла быть вызвана магнитным полем Солнца, направленным вдоль оси вращения. Затем за счет механизма положительной обратной связи в вихрях жидкости постепенно нарастали токи, намагничивающие мантию, пока локальный нагрев жидкого ядра за счет омических потерь не начал разрушать конвективные потоки и магнитное поле Земли не приняло устойчивый современный уровень [8, 9].

Изобретение динамо-машины

Изобретение динамо-машины

Осенью 1866 года Вернеру Сименсу исполнилось 50 лет. Приблизительно к этому времени относится его самое значительное изобретение – он разрабатывает принцип действия динамоэлектрической машины.

Этой проблемой Сименс интересовался издавна, со времени прокладки линий в России. Уже тогда он хотел получать постоянный электрический ток и более высокое напряжение без применения гальванических батарей, только механическими способами. В 1856 году, сконструировав двойное Т-образное якорное устройство, он открыл принцип устройства приборов, обеспечивающих производство постоянного тока. Практически эта мысль впервые воплотилась несколько позже – в магнитных стрелочных телеграфных аппаратах, поставленных фирмой Сименса для государственной Баварской железной дороги, а также в других приборах, например, в сигнальных индукторах для железной дороги, позднее – в телефонных аппаратах и запальных взрывателях.

Осенью 1866 года Сименс снова стал интенсивно заниматься этой проблемой. Он построил индуктор, в котором при движении Т-образного двойного якоря между полюсным наконечником и электромагнитом из мягкого железа оставался небольшой зазор. Электроток, полученный во вращающемся якоре, он применял для возбуждения магнитного поля, образовав таким образом замкнутую цепь из обмотки якоря, обмотки возбудителя и внешним участком цепи. Для взаимного усиления тока в якоре и магнитного поля вполне хватало остаточного магнетизма.

И хотя многие изобретатели, например, датчанин Сорен Йорт, венгр Аньош Йедлик, англичанин Альфред Варли и Чарльз Уитстон работали над этой проблемой независимо друг от друга, в одно и то же время или опережая друг друга, в пользу Сименса говорит то, что ему первому стало совершенно очевидным значение открытия динамоэлектрического принципа, или принципа самовозбуждения. Он убедительно изложил свои научные выводы, непосредственно связанные с этим открытием, в докладе, зачитанном профессором Густавом Магнусом 17 января 1867 года в Берлинской Академии наук, который закончил его следующими словами: “В настоящее время техника получила возможность вырабатывать электрический ток любой силы дешевым и удобным способом везде, где есть свободная механическая энергия. Этот факт будет иметь большое значение для многих областей техники”.

Если первоначальной целью Сименса было получение более высокого напряжения для передачи сообщений, то с изобретением динамо-машины появился источник энергии, обеспечивавший гораздо большую силу тока, которую можно было использовать для освещения и привода механизмов. Понимая это, Сименс должен был последовательно и интенсивно заниматься разработкой практического использования сильноточной техники.

Интересно проследить за тем, как открытая в 1831 году Фарадеем индукция, стала физической основой сильноточной техники. Пиксии, Якоби, Давенпорт, Вагнер и многие другие десятилетиями пытались сконструировать машины, работающие на этом принципе. Но только Сименсу удалось на основе открытого им принципа самовозбуждения обосновать экономически возможность применения техники сильных токов.

Решить задачу поддержания молодой развивающейся техники сильных токов физическими и математическими расчетами удалось англичанам Максвеллу и Гопкинсу.

После 1866 года прошло много времени – целых 12 лет, – прежде чем динамо-машина была построена и внедрена в практику. В эти годы были разработаны не только теоретические основы этого открытия, но пройден первый, самый трудный период становления; повсеместно начали проводиться практические работы, создавшие основу для значительных конструктивных усовершенствований созданного аппарата.

Сначала производство динамо-машин не было прибыльным, а чтобы оно могло “дозреть” и начать развиваться, фирма должна была зарабатывать необходимые деньги в ставших для нее уже традиционными областях: в строительстве телеграфных линий, изготовлении и укладке морского кабеля, а после 1870 года в новой развивающейся отрасли – сигнализации на железнодорожном транспорте.

Читайте также

Гидравлические машины, мосты, каналы, машины для их создания и приспособления для погружения под воду

Гидравлические машины, мосты, каналы, машины для их создания и приспособления для погружения под воду Водолазный костюм Леонардо Еще задолго до Леонардо изобретателей и ученых интересовала возможность погружения человека на значительную глубину. Леонардо, которого

Машины-автоматы и другие «рабочие» машины

Машины-автоматы и другие «рабочие» машины Вертикальная пила Этот проект был обнаружен в Атлантическом кодексе, где собраны основные чертежи машин и механизмов Мастера.Неизвестно, изобрел ли да Винчи эту машину для распилки бревен или только усовершенствовал –

«ДИНАМО»

«ДИНАМО» «Динамо» – это пролетарское спортивное общество войск и сотрудников ГПУ, в сущности один из подотделов ГПУ – заведение отвратительное в самой высокой степени, даже и по советским масштабам. Официально оно занимается физической подготовкой чекистов,

ДИНАМО ТАЕТ

ДИНАМО ТАЕТ К концу мая наше каторжно-привилегированное положение в Медгоре закрепилось приблизительно в такой степени, в какой это вообще возможно в текучести советских судеб, и я (оптимистичен человек!) стал было проникаться уверенностью в том, что наш побег, по крайней

«Динамо» скандальное

«Динамо» скандальное В августе 1976 года в центре сразу двух скандалов оказалась футбольная команда «Динамо» из Киева. Первый случай произошел 14 августа, когда киевляне должны были играть в Донецке против тамошнего «Шахтера». Однако в Донецк киевляне приехали в неполном

«ДИНАМО»

«ДИНАМО» Михаил Якушин в игре был (с кем из футболистов более поздних времен сравнить его по стилю и тактической манере?), пожалуй, как бразилец Сократес. А из наших — как Юрий Гаврилов в самом расцвете своих сил и мастерства (хотя, если разбираться, Якушин играл получше

ГЛАВА V. ИЗОБРЕТЕНИЕ ПАРОВОЙ МАШИНЫ

ГЛАВА V. ИЗОБРЕТЕНИЕ ПАРОВОЙ МАШИНЫ По словам самого Уатта, с того времени, когда университет Глазго поручил ему исправлять модель паровой машины, что случилось зимою 1763 года, ему почти не приходилось иметь дела с применением пара. Правда, в 1759 году Робисон, тогда еще

Изобретение крекинга

Изобретение крекинга Многие достижения Шухова можно охарактеризовать словами «впервые в мире» – зачастую его новаторские изобретения давали начало целым направлениям науки и техники.1891 год. Все более широкое использование двигателей внутреннего сгорания

Первое изобретение

Первое изобретение Около шести лет Василий Дегтярев проработал на Сестрорецком заводе, но у него почти не было друзей. Ввиду секретности задания работать приходилось в одиночку, избегать излишних знакомств и общений.Он знал, что на заводе существуют тайные

Изобретение Хуана

Изобретение Хуана Я держу на ладони четыре смятых кусочка свинца. Угоди они в мой самолет вчера — мне бы несдобровать. А сегодня я ощутил лишь дробный глухой стук за спиной и в бою не придал ему особого значения.Хуан очень доволен:— Хорошо, что мы придумали эту

Первое изобретение

Первое изобретение Отец заметно слабел. Изнурительная многочасовая работа свела его в могилу еще сравнительно молодым. На меня, семнадцатилетнего юношу, обрушилась вся тяжесть содержания большой, удрученной горем семьи.К тому времени я был уже опытным рабочим, но с

ПЕРВОЕ ИЗОБРЕТЕНИЕ

ПЕРВОЕ ИЗОБРЕТЕНИЕ Около шести лет Василий Дегтярев проработал на Сестрорецком заводе, но у него почти не было друзей. Ввиду секретности заданий работать приходилось в одиночку, избегая излишних знакомств.Он знал, что на заводе существуют тайные революционные кружки,

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector