Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ронные электрические машины

44.Асинхронные электрические машины. Принцип действия асинхронного двигателя.

Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.

В ряде стран к асинхронным машинам причисляют также коллекторные машины. Второе название асинхронных машин — индукционные вследствие того, что ток в обмотке ротора индуцируется вращающимся полем статора. Асинхронные машины сегодня составляют большую часть электрических машин. В основном они применяются в качестве электродвигателей и являются основными преобразователями электрической энергии в механическую.

Достоинства:Лёгкость в изготовлении.Отсутствие механического контакта со статической частью машины.

Недостатки:Небольшой пусковой момент.Значительный пусковой ток.

Асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод (сердечник); все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл.град. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения тока в обмотке статора, поэтому его набирают из пластин электротехнической стали для обеспечения минимальных магнитных потерь. Основным методом сборки магнитопровода в пакет является шихтовка.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из пластин электротехнической стали.

На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на обмотку ротора и по закону электромагнитной индукции наводит в них ЭДС. В обмотке ротора под действием наводимой ЭДС возникает ток. Ток в обмотке ротора создаёт собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая, складываясь по окружности, создает вращающий электромагнитный момент, заставляющий ротор вращаться.

Наибольшее распространение среди электрических двигателей Получил трехфазный асинхронный двигатель, впервые сконструированный известным русским электриком М. О. Доливо-Добровольским.

Асинхронный двигатель отличается простотой конструкции Щ несложностью обслуживания. Как и любая машина переменного тока асинхронный двигатель состоит из двух основных частей; статора и ротора. Статором называется неподвижная часть машины, ротором — ее вращающаяся часть. Асинхронная машина обладает свойством обратимости, т. е. может быть использована как в режиме генератора, так и в режиме двигателя. Из-за ряда существенных недостатков асинхронные генераторы практически почти не применяются, тогда как асинхронные двигатели, как это было отмечено выше, получили очень широкое распространение.

Поэтому мы будем рассматривать работу асинхронной машины в режиме двигателя, т. е. процесс преобразования электрической энергии в энергию механическую.

Многофазная обмотка переменного тока создает вращающееся магнитное поле, скорость вращения которого в минуту

Если ротор вращается со скоростью п2, равной скорости вращения магнитного поля (n2=n1), то такая скорость называется синхронной.

Если ротор вращается со скоростью, не равной скорости вращения магнитного поля < n2n1), то такая скорость называется асинхронной.

В асинхронном двигателе рабочий процесс может протекать только при асинхронной скорости, т. е. при скорости вращения ротора, не равной скорости вращения магнитного поля.

Скорость ротора может очень мало отличаться от скорости юля, но при работе двигателя она будет всегда меньше (n2 11 / 20 11 12 13 14 15 16 17 18 19 > Следующая > >>

Асинхронный тип двигателя и принцип его работы

Наиболее популярным из существующих электродвигателей до сих пор является асинхронный двигатель, созданный ещё в XIX веке. Его конструкция оказалась гениально простой и настолько удачной, что все дальнейшие преобразования не касались принципа действия, затрагивая лишь технологию изготовления тех или иных деталей. Например, модифицироваться могли подшипники, на которых крепился вал двигателя, менялась форма обмоток ротора и статора, однако принцип работы асинхронного двигателя оставался прежним.

Как устроен асинхронный двигатель

Независимо от того, какие размеры имеет электрический мотор такого типа, его устройство будет одинаковым. Проще для примера рассмотреть трёхфазный электродвигатель. Такие моторы работают в заводских цехах – на конвейере и в станках, приводят в движение кабину лифта – в домах и на шахтах, перекачивают воду, крутя турбину насоса – и в небольшой скважине, и на мощных водозаборных станциях. Сфера применения трёхфазных устройств широка.

Разные типы двигателя

В отличие от трёхфазного, однофазный асинхронный двигатель часто применяется в бытовой технике – пылесосах, стиральных машинах, вентиляторах, кухонных комбайнах, блендерах и т.д. Они же применяются в магнитофонах и проигрывателях виниловых дисков. Даже в составе персонального компьютера можно найти не один асинхронный двигатель. Но к устройству этой версии двигателя мы вернёмся чуть позже.

Первым появился на свет именно трёхфазный электродвигатель, принцип работы которого строился на взаимодействии электромагнитных полей. Основные части асинхронного двигателя – это статор и ротор. Соответственно, статором была названа часть, которая остаётся неподвижной. Именно она находится непосредственно под внешней оболочкой устройства и имеет форму цилиндра. В этой части по кругу расположены три обмотки – под углом 120° друг к другу.

В современных двигателях можно насчитать множество обмоток, однако, они соединены друг с другом так, чтобы каждая последующая отличалась от предыдущей по фазе, и фазовый сдвиг между соседними обмотками составлял 120°. Обмотки наматываются медным проводом, и к каждой из групп подключается напряжение со своей фазы. Таким образом, получается, что магнитное поле движется по этим обмоткам, как бы замыкаясь в кольцо.

Читать еще:  Fiat ducato технические характеристики двигателя

Статор тоже имеет свои обмотки. Так как на статор электричество не подаётся, он имеет право на замкнутый проводник, который иногда вместо обмоток формируют в виде так называемой беличьей клетки. Если сравнивать точнее, то эта деталь напоминает не саму клетку для проворного грызуна, а беличье колесо, предназначенное для того, чтобы животное выплёскивало свою неуёмную энергию. В роторе устройства «беличья клетка» формируется путём заливки расплавленного алюминия в пазы сердечника, выполненного из набранных стальных листов. Такое устройство называется короткозамкнутым ротором.

Если статор выполнен с реальными обмотками, то он обычно делается многополюсным. Такой ротор называют фазным. Обмотки этого ротора замыкают звездой или треугольником.

Ротор имеет собственный вал, который опирается на задний и передний подшипники. Они, в свою очередь, закреплены на корпусе двигателя так, что ротор внутри статора может свободно вращаться. Принцип действия асинхронных двигателей основан на том, что в обмотках или «беличьем колесе» статором наводится магнитное поле. Под его действием в проводниках ротора появляется ток, а с ним – собственное магнитное поле.

Переменное магнитное поле статора увлекает за собой ротор, и тот начинает вращаться. Но магнитное поле ротора всегда запаздывает относительно поля статора, и вращение обоих полей не может происходить синхронно. Это заставляет ротор преодолевать множество действующих на него сил:

  • силу тяготения;
  • трение качения (если используется шариковый или роликовый подшипник);
  • трение скольжения (если в качестве подшипника применяется бронзовая втулка);
  • силу противодействия приводимого в движение оборудования.

Последняя сила зависит от многих моментов, поэтому её невозможно свести к какому-либо простейшему физическому параметру. Если надо сдвинуть с места трамвай, то двигателю приходится на себя брать нагрузку от редуктора, который надо раскрутить, от самого вагона, который надо сдвинуть, к тому же не надо забывать ещё и о силе трения качения, которое испытывают колёса транспортного средства.

В случае когда идет описание работы профессиональной мясорубки, которую приводит в действие асинхронный двигатель, то здесь преодолевается сопротивление и самого редуктора, и того куска мяса или даже кости, которую надо перемолоть.

Поскольку между статором и ротором есть зазор, то ротор под нагрузкой просто отстаёт от статора по угловой скорости. Следовательно, частота вращения ротора зависит от нагрузки на вал двигателя. Нарушается принцип синхронности, оттуда и название самого устройства: «асинхронный двигатель».

Преимущества асинхронных двигателей

Заложенный в асинхронный двигатель принцип работы даёт ряд преимуществ этому устройству:

  1. Простое устройство делает таковой экономичным в производстве.
  2. Низкое потребление энергии приводит к экономичности устройств, оснащённых таким двигателем.
  3. Универсальность применения в аппаратах, где не требуется точное поддержание частоты вращения или существует схема управления с обратной связью, обеспечивающая вращение с заданной частотой.
  4. Высокая надёжность в работе.
  5. Асинхронный двигатель может работать при однофазном подключении.

Недостатки асинхронных двигателей

Есть у электродвигателей такой конструкции и свои недостатки. К ним можно отнести потери на тепло. Они, действительно, могут перегреваться, особенно – под нагрузкой. Для этого их корпуса нередко делают ребристыми – чтобы они лучше излучали тепло в окружающее пространство. Также асинхронный прибор часто снабжается сидящим на том же валу вентилятором для обдува ротора, потому что корпус может отводить тепло только от статора, так как воздушного зазора между ними нет, чего не скажешь о роторе.

Невозможность стабильно держать частоту вращения делает асинхронный двигатель неприменимым в некоторых устройствах.

Однофазное подключение электродвигателя

В наших домашних приборах чаще всего можно встретить всё тот же асинхронный прибор. Но как же он «понимает», в какую сторону ему начать вращение при его запуске, если на него заводятся только одна фаза и ноль? В такой асинхронный двигатель принцип действия заложен такой же, как и у трёхфазного – вращение магнитного поля. Для этого у каждого двигателя есть ещё один контакт – пусковой.

Статор имеет две обмотки, между которыми выдерживается угол 90°. Обе группы катушек подключены к одной и той же фазе, однако, чтобы обеспечить сдвиг на те же самые 90° между обмотками, одна из них подключается через конденсатор. Это заставляет магнитное поле вращаться.

Подобные двигатели используются, например, в кофемолках или соковыжималках. Можно слышать, как изменяется звук асинхронного двигателя в этих приборах, когда они работают под нагрузкой. На холостом ходу частота вращения ротора у них явно выше.

Подводя итог важно сказать, что асинхронные электродвигатели обрели большую популярность. Конечно, нельзя не забывать о некоторых недостатках. Однако все они перекрываются благодаря великому множеству достоинств.

Как работает асинхронный электродвигатель

Электродвигатели, которые работают от сети переменного тока, называют асинхронными. Такое определение они получили из-за особенностей взаимодействия магнитных полей статора и ротора, в результате которого их скорость вращения различается.

Устройство этих электрических машин проще, чем работающих на постоянном токе, поскольку их статор не имеет электрического соединения с внешними устройствами, осуществляемого посредством токосъемных колец – коллектора, за что они получили и свое второе название «бесколлекторные электродвигатели».

Пальма первенства в их изобретении принадлежит русскому инженеру М. О. Доливо-Добровольскому, создавшему первый действующий трехфазный двигатель в 1890 году. Стоит отметить, что его конструкция не претерпела коренных изменений на протяжении более ста лет.

Почему он вращается

Принцип работы электродвигателя переменного тока основан на феномене возникновения вращающегося магнитного поля, в двух или трех соленоидах, определенным образом ориентированных в пространстве.

Направление вектора электромагнитного поля определяется правилом левой руки, согласно которому четыре пальца указывают направление движения тока, а пятый (большой) – движения самого проводника под действием сил электромагнитной индукции, входящих в открытую ладонь.

Если соленоид один, то при пропускании через него переменного тока стальной сердечник совершает колебательные движения. Чтобы он смог совершить оборот на 360°, нужны минимум две катушки, расположенные перпендикулярно друг другу, из-за чего суммарный вектор силы электромагнитной индукции будет описывать окружность.

Читать еще:  M113 двигатель чип тюнинг

Лучший, более стабильный, результат получается при использовании трех соленоидов, расположенных под углом друг к другу в 120°. Сдвиг фазы тока в катушках соленоида может быть достигнут не только позиционированием, но и включением в цепь одного из них активной нагрузки. Например, конденсатора.

Почему он асинхронный

Магнитное поле статора наводит в сердечнике ротора электрический ток, в результате чего он обзаводится собственным. Его полюса стремятся притянуться к тем, которые его породили, но это движение никогда не завершится по двум причинам:

  1. При совпадении полюсов пропадает разница электрических потенциалов между деталями машины, из-за чего ток в роторе прекращает течь, магнитное поле исчезает, а вал затормаживается. Эта своеобразная пульсация частоты вращения более выражена в двигателях, работающих от одной или двух фаз. Поэтому три катушки предпочтительнее.
  2. Статор больше ротора на величину магнитного зазора, поэтому создаваемое им магнитное поле имеет большую угловую скорость относительно центра вала.

Конструкция асинхронного электродвигателя

Оптимальным конструкторским решением расположения соленоидов является их размещение на внутренней поверхности цилиндра (трубы), внутри которого находится металлический вращающийся сердечник. Первый, поскольку он неподвижный, назвали статором электрической машины, а второй – ротором.

Постоянство расстояния между этими частями, называемого магнитным зазором, обеспечивается двумя крышками с подшипниками качения в центре. У асинхронных двигателей он не превышает трех миллиметров, поскольку при больших значениях сила электромагнитного взаимодействия между ротором и статором ослабевает настолько, что вал останавливается.

Конструкция ротора

Утверждение, что все асинхронные – это бесколлекторные электродвигатели, является допущением, в котором есть исключение. В действительности конструкция подвижной части электрической машины переменного тока бывает двух типов:

  1. Короткозамкнутый ротор.
  2. Ротор с фазными обмотками.

Короткозамкнутым называют ротор, устройство которого похоже на беличье колесо: он состоит из двух медных колец и нескольких толстых проводников, их соединяющих. Пространство между ними – сердечник – набирают из листов легированной стали, что уменьшает паразитные вихревые потоки. Во время пуска двигателя вращающееся поле статора провоцирует возникновение в нем электрического тока, а поскольку все проводники детали соединены друг с другом, возникает короткое замыкание.

Поэтому пусковой ток асинхронных двигателей в два — три раза номинального рабочего. После того как ротор тронется с места, ток расходуется на создание магнитного поля. Из-за простоты устройства мирятся и с падением напряжения, и с моментальным набором скорости, что делает нагрузочную характеристику двигателя жесткой.

Фазные обмотки на роторе устраивают для ликвидации всплеска пускового тока, что необходимо для защиты сети от перегрузки. Их три, они соединяются звездой, а свободные концы выводят на коллектор, состоящий из трех медных колец, разделенных диэлектриком и посаженных на хвостовик вала двигателя. Перед включением ротор шунтируют большим сопротивлением (реостатом), который гасит ток.

Передвигая ползунок реостата, допускают плавное возникновение тока в роторе и раскрутку вала двигателя. Асинхронность таких машин выше, поэтому у них ниже КПД. Зато появляется возможность плавной регулировки частоты вращения. Асинхронный двигатель с фазным ротором встречается очень редко из-за сложной конструкции, которая абсолютно идентична той, что имеет генератор переменного тока. Единственное его отличие – на коллекторные кольца подается постоянное напряжение, поэтому какую-то пару щеток можно замкнуть между собой.

Конструкция статора

Она двухслойная. Наружную «рубашку», которая обеспечивает механическую прочность конструкции, ранее отливали из чугуна. Сейчас все чаще используют легкие сплавы. Для эффективного отвода тепла на ней делают ребра жесткости. Внутри находится слой, набранный из листов легированной стали, которые изолированы друг от друга диэлектрическим лаком. На его внутренней поверхности устроены пазы. В них укладываются обмотки – медный проводник из нескольких витков, которые изолированы друг от друга во избежание пробоя, приводящего к снижению силы магнитного поля и аварии машины. Зазор между статором и ротором очень мал, поэтому витки скрыты в толще металла, чтобы не мешать вращению.

Однофазные двигатели

Однофазный асинхронный двигатель отличается лишь количеством статорных обмоток, которых две. Они всегда включены параллельно и расположены перпендикулярно друг другу. Для обеспечения начального фазного сдвига в цепь одной из них включена активная нагрузка. Обычно бумажный конденсатор большой емкости. После набора оборотов одна из обмоток отключается. Так делается в двигателях мощностью свыше пятидесяти ватт. У маломощных машин вторая обмотка выполняется короткозамкнутой. Фазу сдвигает индуцированный противоток.

Управление скоростью вращения

Явным недостатком асинхронных двигателей является сложность управления ими. Для изменения скорости вращения используются два метода:

  1. Частотное преобразование питающего напряжения. Практически никогда не применяется, поскольку по законам электротехники любая индуктивность (обмотка, соленоид, трансформатор) спокойно переносит только повышение частоты. При ее понижении она начинает работать в режиме нагревателя.
  1. Варианты с числом, способом укладки и размещением в пазах обмоток статора. Метод основан на том, что три фазных обмотки – это один условный двухполюсной вращающийся магнит, совершающий полный оборот за период, равный частоте сети. То есть, при самой простой конструкции статорной обмотки частота вращения будет равна 3 тыс. оборотов в минуту.

Если на статоре разместить шесть обмоток, сгруппировать их по три и подключить последовательно, то получим не два, а четыре полюса. Из-за этого частота вращения снизится в два раза – до 1500 оборотов в минуту.

При устройстве девяти обмоток, подключенных по тому же принципу, скорость снизится еще в два раза, до 750 оборотов в минуту, ведь полюсов станет шесть. Дальнейшее снижение скорости не производится, поскольку связано с большими техническими трудностями.

Нередко технология производства требует, чтобы привод мог вращаться с двумя или тремя скоростями. Эта проблема решается двумя путями:

  1. Подключением дополнительных независимых обмоток. Вместе с изменением скорости меняется и крутящий момент электродвигателя, поскольку индуктивность всякий раз разная.
  1. Устройством дополнительных выводов из одной обмотки. Так называемый метод Даландера. Имеет преимущество в том, что крутящий момент сохраняется неизменным.
Читать еще:  Вибрации двигателя при холодном пуске

Двухскоростной асинхронный электродвигатель имеет статорную обмотку, каждая из катушек поделена которой на две дополнительными выводами. Для наглядности обозначим 2U, 2V и 2W. В режиме тихого хода (1500 оборотов) обмотки соединены треугольником, питающее напряжение подается на выводы 1U, 1V и 1W, а 2U, 2V и 2W остаются свободными. Если требуется набрать 3 тыс. оборотов, то производится коммутация:

  • питание подается на 2U, 2V и 2W;
  • выводы 1U, 1V и 1W соединяются между собой.

В результате схема подключения обмоток меняется с «треугольника», в каждой стороне которого две последовательных катушки, на «звезду», в каждом луче которой две параллельных катушки. Число полюсов сократилось вдвое, а суммарная индуктивность осталась той же.

Существуют и трехскоростные электродвигатели, обмотки которых имеют по три вывода, поскольку должно получиться девять обмоток.

Обычно для управления многоскоростными асинхронными двигателями устраивают силовую релейную схему. Это позволяет изменять скорость вращения за несколько секунд.

Значимость изобретения в конце XIX века трехфазного асинхронного двигателя вполне можно сравнить с появлением компьютера и даже с полетом в космос. До сих пор человечество не сумело создать ничего более эффективного, ведь КПД этого устройства близко к ста процентам.

Про асинхронный электродвигатель

Написав про Теслу, заметил, как мало мы все знаем историю, в том числе и историю техники.
Краткую сводку об изобретении радио в том посте я уже привёл.
Но даже в сугубо техническом вопросе об электродвигателе не всё так ясно, оказывается.

Например, мы (студенты как раз профильной специальности) учили, что асинхронный электродвигатель изобрёл наш человек (в смысле русский) Доливо-Добровольский.
Ну, так мы и про радио тоже учили, что наш человек Попов, а в действительности всё куда интереснее!

Так вот, чтобы понимать происходящее более века назад, надо представлять, как бурлила тогда научная и инженерная жизнь.
Всё было новым, неизвестным, многие одновременно думали об одном и том же, решали одни и те же задачи — и находили различные пути их решения.
Это было золотое время технической цивилизации Земли. Всё лежало на поверхности — не нужны были никакие синхрофазотроны и даже микроскопы (в области электротехники).

К тому времени уже использовался двигатель постоянного тока, но он имел как достоинства (простоту управления), так и недостатки (большие эксплуатационные расходы из-за износа контактных частей, трудности передачи электроэнергии на большие расстояния).
Многим приходила в голову идея использовать вращающееся магнитное поле (которое удобно делать с помощью переменного тока), но не все смогли воплотить эту идею даже в теории.

Из этой картинки очевидно устройство синхронной машины — её ротор (обычный магнит или электромагнит) вращается синхронно с полем, которое создаёт статор.
Но синхронный двигатель также имел ряд недостатков — он был дорог, им трудно управлять и, самое главное, его трудно запустить. Ведь в большинстве механизмов в момент пуска имеет место очень большая нагрузка (поди-ка сдвинь с места стоящий поезд!). При этом поле не в состоянии увлечь магнит ротора за собой, и двигатель не работает, а только чрезмерно греется.

Однако возможен и другой подход — когда ротор всегда отстаёт от вращающегося поля. Чем больше нагрузка, тем больше отставание (скольжение).
По-видимому, первым опубликовал свои исследования итальянец Галилео Феррарис (в 1888 году).
Однако он счёл технологию асинхронного двигателя бесперспективной из-за низкого КПД.
Такое мнение было справедливым: с уменьшением полезной нагрузки КПД действительно сильно падает.
И на инженеров это подействовало, «как красная тряпка на быка». Они наперегонки начали совершенствовать конструкцию, потому что уж очень привлекательной она была.

Проблема была серьёзной. Подумать только, ещё в 1875 году Тесла в своём техническом училище слушал лекцию о неосуществимости использования переменного тока в электродвигателях!
Как бы то ни было, Тесла тоже включился в гонку, и, пока Феррерис публиковал теоретические основы асинхронного двигателя и рассуждал о его бесперспективности, Тесла взял и всё это запатентовал. Теперь в США, естественно, считают изобретателем именно его.
На самом деле эти двое и конкурентами не были, они самостоятельно всё придумали (ну, так утверждается, по крайней мере).
Но без бумажки, сами понимаете. У Теслы бумажка уже была.

Однако причём тут упомянутый в самом начале Доливо-Добровольский, «русский изобретатель асинхронного двигателя»?!

Во-первых, русский он только по происхождению. А жил основную часть жизни в Германии, и работал на германский концерн AEG, отчего России никакого проку и не было.

Но своё слово сказал и он. Подстёгнутый статьёй Феррариса, «уже в 1889 году Доливо-Добровольский получает патент на трехфазный асинхронный двигатель с короткозамкнутым ротором типа «беличье колесо», а в 1890-м — патенты на фазный ротор с кольцами и пусковыми устройствами. Данные изобретения открыли эру массового промышленного применения электрических машин. В настоящее время асинхронный двигатель является самым распространенным электродвигателем.» (http://ru.wikipedia.org/wiki/Асинхронная_машина)

«Работа в этом направлении, на основе полученного Николой Теслой двухфазного тока, в необычайно короткий срок привела к разработке трёхфазной электрической системы и совершенной, в принципе, не изменившейся до настоящего времени конструкции асинхронного электродвигателя.» (http://ru.wikipedia.org/wiki/Доливо-Добровольский, Михаил Осипович)

Но и у Теслы тоже был трёхфазный двигатель — на втором фото. Кто же из них был первым?!

Вот такая вот непростая, запутанная, азартная история технических открытий и изобретений!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector