Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Трехфазный асинхронный двигатель: принцип работы

Трехфазный асинхронный двигатель: принцип работы

Асинхронные моторы нашли большое применение в хозяйстве. В них преобразуется до семидесяти процентов электроэнергии в механическую. Среди всех электрических двигателей этот вид является самым простым, надежным и дешевым в производстве. Наибольшее распространение имеет трехфазный асинхронный двигатель, принцип работы которого рассмотрен вкратце в этой статье.

Общее об асинхронных моторах

Двигатели не имеют щеточно-коллекторного или скользящего токосъемного узлов, благодаря чему достигаются минимальные расходы при их эксплуатации. Дешевизна и высокая степень надежности сделали эти двигатели широко распространенными в разных сферах.

  • однофазными;
  • трехфазными.

Однофазные механизмы работают в вентиляторах, станках, стиральных машинах, различных электрических инструментах и водоподающих насосах. Трехфазные виды нашли свое применение в разных механизмах, функционирующих в промышленных, сельскохозяйственных, строительных секторах. Также их широко используют и для бытовых нужд.

Устройство

Трехфазный асинхронный двигатель, принцип работы которого выполняется стандартным образом, является электроагрегатом, состоящим из:

  • неподвижного статора;
  • ротора.

Статор включает в себя станину, куда впрессовывается электромагнитное ядро, состоящее из магнитного провода и трехфазной распределительной обмотки. Ядро служит для намагничивания агрегата или появления вращающегося магнитного поля. Магнитопровод состоит из тонких, штампованных, отделенных друг от друга листов, при скреплении которых образуются зубцы и пазы. Он является малым магнитным сопротивлением для потока, который образует обмотка статора. В итоге происходит намагничивание, которое и усиливает поток.

В пазы укладывается трехфазная обмотка статора, которая в самом простом своем варианте состоит из трех катушек с осями, сдвинутыми друг к другу на 120 градусов. Фазные катушки соединяются в форме звезды или треугольника.

Более подробно принцип работы асинхронного электродвигателя в части соединений наглядно раскрывается ниже через проведение простого опыта.

Ротор состоит из магнитопровода, который тоже имеет штампованные стальные листы с пазами, где располагается обмотка. Последняя бывает:

  • фазной, подобной той, что в статоре, которая соединена в звезду;
  • короткозамкнутой, наиболее применяемой, которая представляет собой форму «беличьей клетки».

Принцип действия асинхронного двигателя

Уже говорилось, что трехфазная обмотка статора необходима для намагничивания или образования вращающегося магнитного поля. Нетрудно догадаться, что законом электромагнитной индукции управляется асинхронный двигатель. Принцип работы его заключается в следующем: вращающееся статорное магнитное поле пересекает роторную короткозамкнутую обмотку, что вызывает электродвижущую силу и протекание переменного тока. Этот ток образует свое магнитное поле, а взаимодействуя со статорным вращающимся полем, начинает роторное вращение. Еще в восемнадцатом веке был продемонстрирован этот принцип посредством проведения простого опыта: подковообразный магнит вращали с постоянной скоростью рядом с металлическим диском, который свободно был закреплен на оси. Диск начинал вращаться за магнитом, но с меньшей скоростью.

Если знать закон элетромагнитной индукции, то явление становится понятным. Когда магнитные полюса движутся, то рядом с поверхностью диска под ними наводится электродвижущаяся сила. Из-за нее создаются токи, которые образуют магнитное дисковое поле.

Наглядное представление

Это же явление для простоты можно представить себе как колесо (вместо диска), в котором находится большое количество спиц, соединенных втулкой и ободом. Они проводят ток. Элементарным контуром являются две спицы, соединяющие их обод и втулки. Дисковое поле сцепляется с полюсным магнитным полем, и диск увлекается им. Понятно, что самая большая электродвижущаяся сила будет действовать в неподвижном состоянии, а самая меньшая, наоборот, когда она приближается к скорости дискового вращения.

Если взять асинхронный двигатель, принцип работы короткозамкнутой роторной обмотки подобен диску, а статорной — вращающемуся магниту. Однако в неподвижном статоре вращение магнитного поля реализуется через трехфазную токовую систему, проходящую в обмотке со сдвигом фаз.

Что означает трехфазный двигатель

Инженер из г. Ростова-на-Дону Н. Ковалев на практике столкнулся с тем, что многие домашние мастера не знают, как подключить трехфазный асинхронный электродвигатель к бытовой электросети напряжением 220 В. Он решил, что будет полезно еще раз и более подробно изложить, как это правильно сделать.

Наиболее простой и широко используемый способ, обеспечивающий работу трехфазного электродвигателя от сети, которая имеет только одну фазу и ноль, — это подключение одной из трех его обмоток через фазосдвигающий конденсатор. При этом мощность на валу двигателя будет гораздо меньше той, которую двигатель имеет при питании от 3-х фаз.
С фазосдвигающим конденсатором в однофазном режиме хорошо работают моторы серии А, АО, А02, АОЛ, АПИ, УАД. Самый трудный вопрос при их использовании — это пуск двигателя под нагрузкой. В идеале емкость фазосдвигающего конденсатора должна уменьшаться с ростом числа оборотов ротора. Выполнить это условие сложно, и поэтому обычно используют два конденсатора. При пуске включают их параллельно, а после разгона оставляют включенным только один — рабочий.
Для правильного подключения обмоток электродвигателя к сети прежде всего нужно разобраться с их выводами. Выводы 3-х статорных обмоток имеют следующие обозначения:
С1, С2, СЗ — начала обмоток I, II и III фаз;
С4, С5, С6 — концы обмоток I, II и III фаз.
Начала обмоток в электрических схемах обычно отмечают точкой, как это показано на рис. 1.

Читать еще:  Что такое двигатель 3rz

Если на клеммной коробке или в паспорте о напряжении питания электродвигателя написано 220/380 В, то это означает, что его обмотки при напряжении трехфазной сети 220 В нужно включать по схеме «треугольника», а при 380 В — в «звезду» (рис. 2).

В настоящее время в России электрических сетей с напряжением между фазами 220 В практически не осталось.
В формулы для расчета фазосдвигающих конденсаторов входят две основные величины: U — напряжение питающей линии (сети) и I — ток, протекающий в обмотках двигателя. Если величину напряжения в сети мы знаем однозначно (конечно же, она — 220 В), то ток I можно определить только в том случае, если нам будет известна мощность двигателя — Р (Вт), коэффициент его полезного действия — η и коэффициент электрической мощности — cosφ данного типа двигателя. Эти характеристики указывают в паспорте. Подставив их величины в формулу
I=P/(1,73Uηcosφ)[A],
находим ток, значение которого используем для расчета рабочей и пусковой емкостей конденсаторов (Ср, Сп) в различных схемах их подключения к обмоткам (см. таблицу 1). В этой таблице указано и напряжение Uc, возникающее на конденсаторах.

*Где: Р — мощность двигателя (Вт); U — напряжение сети (В); η — К.П.Д.; cosφ -коэффициент мощности двигателя.

Емкость пускового конденсатора обычно в 2,5-3 раза больше емкости рабочего. Для сдвига фазы в цепи питания обмоток пригодны конденсаторы МБГО, МБГП, МБГТ, К42-4 на постоянное напряжение не ниже 600 В, а также МБГЧ, К42-19 — на переменное напряжение 250 В и выше. Электролитические конденсаторы при всех ухищрениях их включения с помощью диодов работают не надежно и рекомендовать к применению в данном случае не следует.
Для тех, кто затрудняется произвести расчеты необходимой емкости конденсаторов, примерное их значение в зависимости от мощности двигателя приводится в таблице 2.

Следует помнить, что при выборе конденсаторов по таблице возможны значительные ошибки, и двигатель во время работы может перегреваться. В этом случае подбором емкостей рабочего конденсатора необходимо добиться максимально возможного равенства напряжения на обмотках. Если двигатель используется в недогруженном режиме, то величина рабочей емкости может быть уменьшена.

Литература
1. Пестриков В.Н. «Домашний электрик и не только», С.-Пб., 2002, 59-71.
2. Виноградов В.Н., Виноградов Ю.Н. «Как самому рассчитать и сделать электродвигатель», М., «Энергия», 1976, 58-61.
3. Ерлыкин Е. А. «Практические советы радиолюбителю», М., «МО СССР», 1976, 284-250.

Наиболее оптимальный способ подключения трехфазного электродвигателя к однофазной сети с применением фазосдвигающего конденсатора предложил В. Клейменов из Москвы (журнал «Радио» №2, 2002г.). Он указал на то, что при включении обмоток по схеме 1 (см. табл. 1 и рис. 3А) в статоре образуется дополнительная компонента вращающегося магнитного поля, тормозящая ротор. Из-за этого крутящий момент на оси включенного подобным образом двигателя не превышает 35% номинального даже при оптимальном подборе рабочего конденсатора.
Простым отключением от сети обмотки III можно повысить крутящий момент до 41% от номинального. Но наиболее эффективным будет включение этой обмотки встречно обмотке II через отдельный конденсатор (рис. 3), либо через увеличенную в 2 раза емкость конденсатора обмотки II, как это показано на схеме пунктирной линией.

Читать еще:  Датчик оборотов электро двигателя

Принцип работы трёхфазного асинхронного двигателя

Наиболее распространённым в промышленности типом двигателя переменного тока является трёхфазный асинхронный двигатель, изобретённый в 1888г. М. О. Доливо-Добровольским.

Рис. 43. Трёхфазный асинхронный двигатель

В пазах статора размещены три катушки, плоскости которых смещены одна относительно другой на 120°. Катушки соединены звездой. При подключении трёхфазной системы ЭДС к зажимам А, В, С в статоре возникает круговое вращающееся магнитное поле. В пазах ротора находятся три замкнутые на себя или на внешние сопротивления катушки (рис. 43).

Круговое вращающееся магнитное поле с угловой скоростью ω пересекает провода катушек неподвижного ротора и наводит в них ЭДС, и в катушках ротора потекут токи. По закону Ленца эти токи стремятся своим магнитным полем ослабить вызывающее их магнитное поле.

Механическое взаимодействие токов ротора с вращающимся магнитным полем приведёт к тому, что ротор начнёт вращаться в ту же сторону, что и магнитное поле (правило левой руки).

Ротор вращается асинхронно, т.е. частота вращения его ωрменьше частоты вращения магнитного поля ω. Отсюда и название двигателя асинхронный.

Разность частот вращения поля и ротора отнесённая к скорости поля, называется скольжением:

(132)

Скольжение не может быть равно нулю, так как при одинаковых частотах вращения поля и ротора прекратилось бы наведение токов в роторе и, следовательно, отсутствовал бы вращающийся момент.

В рабочем режиме асинхронный двигатель находится в динамическом равновесии, когда создаваемый благодаря скольжению вращающий момент уравновешивает тормозящий момент нагрузки на его валу. С увеличением механической нагрузки тормозящий момент становится больше вращающего и скольжение увеличивается. Вследствие этого возрастают индуктированные в обмотке ротора ЭДС и токи, что вызывает увеличение вращающегося момента до нового состояния динамического равновесия (при большем скольжении).

Однако вращающий момент может расти с увеличением скольжения только до определённого предела, так называемого критического значения при критическом скольжении, после чего он падает, а двигатель затормаживается. В этот момент должна сработать максимальная токовая защита, иначе двигатель сгорит.

При нормальной нагрузке скольжение асинхронных двигателей в среднем составляет 2 – 4 %.

Принцип работы трёхфазного синхронного двигателя

Трёхфазный синхронный генератор, как и многие другие типы электрических машин, обладает свойством обратимости: он может работать как синхронный двигатель. Поэтому конструктивно синхронный двигатель мело отличается от синхронного генератора.

Если присоединить обмотку статора к трёхфазной системе ЭДС, а обмотку возбуждения ротора – к источнику постоянного тока, то вращающееся магнитное поле статора будет периодически создавать на валу моменты разных знаков. Поэтому ротор не сможет прийти во вращение – он будет вибрировать.

Для пуска двигателя необходимо сначала (при разомкнутой обмотке ротора) привести ротор во вращение от внешнего двигателя до частоты вращения, близкой к частоте вращения поля. Если после этого включить обмотку возбуждения ротора, то двигатель «втянется в синхронизм». Ротор будет вращаться синхронно с полем статора.

Ротор представляет собой электромагнит постоянного тока с явно выраженными полюсами. При втягивании в синхронизм ось поля ротора стремиться совпасть с результирующим вектором магнитной индукции .

Для пуска синхронного двигателя может быть использована специальная пусковая обмотка, действующая так же, как в асинхронном двигателе.

При строго синхронном вращении ротора имеется угловой сдвиг между осями полей статора и ротора, зависящий от нагрузки (от момента сопротивления на валу). С увеличением нагрузки этот угол увеличивается, благодаря чему момент вращения так же увеличивается. Максимальный вращающий момент получается при угле между ЭДС двигателя и напряжением сети около 90°, после чего дальнейшее увеличение нагрузки приводит к остановке двигателя и «выпадению» его из синхронизма.

Если изменять постоянный ток в цепи возбуждения ротора, то можно в широких пределах регулировать cosϕ двигателя. Так, при «недовозбуждённом» двигателе уголϕ положительный, т.е. ток отстаёт от напряжения, а при «перевозбуждённом» двигателе уголϕ отрицательный – ток опережает напряжение. Это свойство синхронных двигателей весьма ценно и широко используется в промышленности для повышенияcosϕэлектроустановок.

Читать еще:  Чтобы увеличить обороты двухтактного двигателя

Синхронные двигатели выполняются обычно для номинальных режимов работы про cos= 1 иcos= 0,8 (опережающем).

Принцип действия трехфазного асинхронного двигателя

В асинхронной машине одну из обмоток размещают на статоре 1 (рис. 1, а), а вторую — на роторе 3. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка статора 2 представляет собой трехфазную (или в общем случае многофазную) обмотку, катушки которой размещают равномерно по окружности статора. Фазы обмотки статора АХ, BY и CZ соединяют по схеме Υ или Δ и подключают к сети трехфазного тока (рис. 1,6). Обмотку ротора 4 выполняют трехфазной или многофазной и размещают равномерно вдоль окружности ротора. Фазы ее в простейшем случае замыкают накоротко.

Рис. 1. Электромагнитная схема асинхронной машины, направления токов и электромагнитного момента при работе в двигательном режиме

При питании обмотки статора трехфазным током создается вращающееся магнитное поле, частота вращения которого (синхронная)

Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС. На рис. 1, а показано, согласно правилу правой руки, направление ЭДС, индуцированной в проводниках ротора при вращении магнитного потока Ф по часовой стрелке, при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки. Активная составляющая тока ротора совпадает по фазе с индуцированной ЭДС; поэтому условные обозначения (крестики и точки) на рис. 1 показывают одновременно и направление активной составляющей тока.

На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарное усилие Fрез, приложенное ко всем проводникам ротора, образует электромагнитный момент М, увлекающий ротор за вращающимся магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение и его установившаяся частота вращения п2 соответствует равенству электромагнитного момента тормозному, создаваемому приводимым во вращение механизмом и внутренними силами трения. Такой режим работы асинхронной машины является двигательными, очевидно, в данном случае 0 ≤ п2 s > 0.

Если ротор асинхронной машины разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля п1 то изменится направление ЭДС в проводниках ротора и активной составляющей тока ротора, т. е. асинхронная машина перейдет в генераторный режим (рис. 2, а). При этом изменит свое направление и электромагнитный момент М, который станет тормозящим. В генераторном режиме асинхронная машина получает механическую энергию от первичного двигателя, превращает ее в электрическую и отдает в сеть, при этом s

Если изменить направление вращения ротора (или магнитного поля) так, чтобы магнитное поле и ротор вращались в противоположных направлениях (рис. 2,6), то ЭДС и активная составляющая тока в проводниках ротора будут направлены так же, как в двигательном режиме, т. е. машина будет получать из сети активную мощность. Однако в данном режиме электромагнитный момент М направлен против вращения ротора, т. е. является тормозящим. Этот режим работы асинхронной машины называют режимом электромагнитного торможения. Так как ротор вращается в обратном направлении (относительно направления магнитного поля), то n2 1.

Рис. 2. Электромагнитная схема асинхронной машины, направления токов и электромагнитного момента при работе ее в режимах.

Таким образом, характерной особенностью асинхронной машины является наличие скольжения, т. е. неравенство частот вращения n1 и п2. Только при указанном условии в проводниках обмотки ротора индуцируется ЭДС и возникает электромагнитный момент. Поэтому машину называют асинхронной (ее ротор вращается несинхронно с полем).

На практике обычно встречается двигательный режим асинхронной машины, поэтому теория асинхронных машин изложена здесь применительно к этому режиму с последующим обобщением ее на другие режимы работы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector