Sw-motors.ru

Автомобильный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

БАЛАНСИРОВКА ДВИГАТЕЛЕЙ

БАЛАНСИРОВКА ДВИГАТЕЛЕЙ

Равномерность работы двигателя зависит также от его сбалансированности. Любой поршне­ вой двигатель подвергается действию реактивных сил. Когда поршень в одноцилиндровом двигателе движется вверх, корпус двигателя стремится сдвинуться вниз, и наоборот. При этом та часть автомобиля, на которую установлен двигатель, будет постоянно подвергаться вертикальным колебаниям. Это явление можно устранить, установив на коленчатый вал противовесы. Вертикальные колебания прекратятся, но возникнут поперечные, вызванные самими противовесами. Если в двухцилиндровом рядном двигателе поршни будут двигаться в противоположных направлениях, они будут взаимно компенсировать вертикальные пере­ мещения, но возникнут колебания двигателя вперед-назад. Все автомобильные двигатели устанавливаются на упругих опорах, но в случае большого дисбаланса вибрации могут пере­ даваться на кузов автомобиля. Кроме неравномерности работы двигателя, вызванной пере­ мещением поршней, существует неравномерность, вызванная движением шатунов, которые совершают сложное движение: вверх-вниз и из стороны в сторону.

Общий дисбаланс двигателя в значительной степени зависит от его компоновки. Так, на­ пример, четырехцилиндровый рядный двигатель, в отличие от V-образных четырехцилиндро­ вых (двигатель автомобилей Lancia, МеМЗ-968), достаточно хорошо сбалансирован. Неслучай­ но они устанавливаются на многих небольших легковых автомобилях. Хотя при увеличении объема такого двигателя вибрации могут стать ощутимыми. Еще лучше сбалансирован четы­ рехцилиндровый двигатель с оппозитными (противолежащими) цилиндрами. Такие двигатели ус­ пешно применялись на автомобилях VW Beetle, а в настоящее время устанавливаются на боль­ шинство автомобилей Subaru. Шестицилиндровые двигатели с оппозитными цилиндрами (Porsche 911 и некоторые Subaru) обладают отличной равномерностью при работе. Кроме то­ го, такие двигатели дают возможность понизить центр масс автомобиля, а при переднем рас­ положении — применить пологий капот, улучшающий аэродинамику автомобиля. К недостаткам таких двигателей следует отнести сложность их производства и обслуживания. В рядном шестицилиндровом двигателе можно добиться практически абсолютной сбалансированности сил инерции. V-образные шестицилиндровые двигатели более компактны по длине, что особен­ но важно при их поперечной установке на автомобиле. Сбалансированность V-образных дви­ гателей зависит от угла между осями цилиндров. Так, для V-образного шестицилиндрового

двигателя наилучшим углом будет угол 60° или 120° (или 180° у двигателя с оппозитными цилиндрами). Такие же углы «идеально» подхо­ дят для почти полностью сбалансированного двигателя V12, хотя большие углы увеличивают ширину двигателя. Достаточно хорошо сбалан­ сирован двигатель V8, если угол между осями цилиндров составляет 90° и применяется соот­ ветствующая конструкция коленчатого вала.

Дисбаланс двигателей может быть почти полностью компенсирован применением ба- лансирных валов (рис. 2.12), которые имеют противовесы и приводятся во вращение от коленчатого вала двигателя. Для получе­ ния хороших результатов балансирные валы должны устанавливаться в определенном месте двигателя, что существенно усложняет его конструкцию.

В последнее время для уменьшения виб­ раций рядных четырехцилиндровых двига­ телей большого объема стали широко при­ менять балансирные валы, устанавливаемые рядом в поддоне картера двигателя (двига­ тели Ford Coswort D0HC, двигатели BMW) (рис. 2.13).

Довольно часто производители автомо­ билей увеличивают мощность двигателя за счет добавления еще одного цилиндра. Такой способ дает возможность сборки двигателей на одной технологической линии, что удешев­ ляет производство. Таким образом, были созданы пятицилиндровые двигатели Volvo, Volkswagen и FIAT. Для таких двигателей час­ то применяются балансирные валы. Двигатели с тремя цилиндрами также сбалансированы плохо, и, поскольку они устанавливаются на недорогие автомобили, конструкторы часто отказываются от применения балансирных валов, позволяя двигателю работать нерав­ номерно, но для монтажа двигателя приме­ няют специальные вибропоглощающие опоры, которые дают возможность свести к миниму­ му передачу на кузов вибраций. На дорогих автомобилях применяются еще более совер­ шенные опоры двигателя. Так, на Range Rover с дизелем TD6 применяются гидравли­ ческие опоры с электронным управлением. Компьютер, управляющий работой этих опор, сводит практически к нулю все вибрации, пе­ редающиеся на кузов автомобиля.

Рис. 2.12. Балансирные валы двигателя GM Vortec 2004 г. располагаются рядом с коленчатым валом в блоке цилиндров и имеют возможность вращаться в раз­ ные стороны благодаря шестеренчато- цепному приводу. Для снижения шума ис­ пользуются гидравлический натяжитель и успокоители цепи

Рис. 2.13. Компактные балансирные валы четырехцилиндрового двигателя BMW Valvetronic располагаются в поддоне картера

Рис. 2.14. Двигатель V10 произведенный компанией BMW для автомобилей Фор­ мулы-1

Двигатели V10 (рис. 2.14), которые успешно применяются на гоночных автомобилях Фор­ мулы-1, между рядами цилиндров имеют угол 72°. Такой двигатель недостаточно сбаланси­ рован, но работает довольно равномерно из-за большого числа цилиндров.

БЛОК ЦИЛИНДРОВ

Блок цилиндров (рис. 2.15) и его головка — это самые крупные и тяжелые части двигателя, изгота­ вливаемые с помощью литья с последующей механической обработкой. В двигателе с жидкостным охлаждением вокруг цилиндров располагаются каналы для прохода охлаждающей жидкости, кото­ рые образуют водяную рубашку. Цилиндры двигателей воздушного охлаждения обычно изготавли­ ваются отдельно и имеют ребра для увеличения площади охлаждаемой поверхности (рис. 2.16).

Нижняя часть блока цилиндров обычно обрабатывается для установки в блок коренных подшипников коленчатого вала и для присоединения поддона картера. Большое значение имеет расстояние между соседними цилиндрами. Увеличение расстояния дает возможность повы­ сить жесткость блока и обеспечить возможность увеличения в дальнейшем рабочего объема двигателя путем увеличения диаметра цилиндров (наиболее простой способ получения моди­ фикаций двигателей различной мощности). С другой стороны, это приводит к увеличению га­ баритных размеров двигателя и его массы. В последнее время некоторые производители автомобильных двигателей изготавливают блоки цилиндров, в которых соседние цилиндры соприкасаются стенками (так называемые сиамские блоки). Такой способ дает возможность получить довольно жесткую конструкцию при сравнительно небольшом размере. Жесткость блока цилиндров в значительной степени определяет шумовые характеристики двигателя.

Читать еще:  Экономичный двигатель своими руками

Долгое время единственным материалом для изготовления блоков цилиндров служил чу­ гун. Этот материал недорог, он обладает высокими прочностью и жесткостью при хороших лить­ евых качествах. Кроме того, обработанные хонингованием внутренние поверхности чугунных цилиндров обладают отличными антифрикционными свойствами и высокой износостойкостью. Су­ щественными недостатками чугуна являются его большая масса и низкая теплопроводность. Стремление конструкторов к созданию более легких двигателей привело к разработке конструк­ ции блоков цилиндров из алюминиевых сплавов. Алюминий значительно уступает чугуну в жест­ кости и износостойкости, поэтому блок из алюминия должен иметь большое количество ребер жесткости, а в качестве цилиндров обычно служат те же чугунные гильзы, которые вставляют-

Рис. 2.15. Алюминиевый блок цилиндров двигателя V8 с запрессованными «сухи­ ми» гильзами. В нижней части блока вид­ на рама лестничного типа, с помощью ко­ торой крепится коленчатый вал

Рис. 2.16. Цилиндр и поршень двухтактно­ го двигателя воздушного охлаждения

ся в алюминиевый блок в процессе сборки, заливаются или запрессовываются в него при изготовлении (рис. 2.17). Если гильза ци­ линдра непосредственно омывается охлаж­ дающей жидкостью, она называется «мок­ рой», а если нет — «сухой». Мокрые гильзы должны иметь надежное уплотнение с полостью охлаждения блока цилиндров.

Применение большого количества ребер жесткости и чугунных гильз в значительной мере сводит на нет преимущества от приме­ нения блоков цилиндров из алюминиевых сплавов. Использование в производстве со­ временных технологий дает возможность изго­ товления легких «алюминиевых» двигателей, у которых блок цилиндров не имеет чугунных гильз (рис. 2.18). В рабочих поверхностях ци­ линдров в алюминиевых блоках электролити-

Рис. 2.17. Блок цилиндров двигателя Nordstar GM с «сухой» гильзой. На разре­ зе хорошо видно, как вставлены в блок цилиндров «сухие» гильзы. Обратите вни­ мание на выполненные в днищах порш­ ней канавки, предохраняющие от касания поршня клапанами

Рис. 2.18. Двигатель Jaguar с алюминиевым блоком. Блок цилиндров этого компактно­ го шестицилиндрового V-образного 24-клапанного двигателя, предназначенного для поперечной установки на автомобиль Jaguar X-type, полностью изготовлен из алюми­ ниевого сплава

Рис. 2.19. Рама лестничного типа в блоке. Ра­ мы лестничного типа заменяют привычные крышки коренных подшипников коленчато­ го вала в конструкции современных ДВС, придают высокую жесткость блоку цилинд­ ров и продлевают жизнь коленчатому валу

ческим путем создается повышенное содер­ жание кремния, а затем цилиндры подверга­ ются химическому травлению для создания на рабочей поверхности цилиндров износо­ стойкой пористой пленки чистого кремния, хорошо удерживающей смазку. Кроме того, особенно часто в двухтактных двигателях на алюминиевый цилиндр наносится слой хрома или кремний-никелевого сплава (никасил).

Жесткость алюминиевого блока цилиндров может быть повышена не только примене­ нием большого количества ребер жесткости, но и использованием специальных проставок лестничного типа в блоке (рис. 2.19). Такие проставки, соединенные с блоком, помимо значительного повышения жесткости самого блока, служат прочной основой для установки

коренных подшипников коленчатого вала, что повышает его долговечность. Такая конструкция блока цилиндров становится нормой при производстве бензиновых двигателей современных легковых автомобилей. При производстве дизелей, в которых из-за высоких нагрузок и большой шумности требуется большая жесткость блока, часто применяют чугунные блоки цилиндров.

Дата добавления: 2016-09-06 ; просмотров: 2744 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Балансировка двигателя что это

Балансировка

Балансировка — это процесс компенсации неуравновешенных масс ротора. Наличие неуравновешенных масс на роторе называется, соответственно, дисбалансом.

Дисбаланс вращающихся масс ротора является одним из самых наиболее распространенных дефектов оборудования, обычно приводящим к резкому увеличению вибраций.

Повышенная вибрация приводит к увеличению нагрузки на подшипники оборудования, изменяет режим работы и приводит к их ускоренному разрушению. Кроме того, в ряде случаев, повышенная вибрация негативно сказывается на качестве выпускаемой продукции и может служить причиной разрушения несущих конструкций, анкеров или фундамента агрегатов.

Удвоение нагрузки в восемь раз (!) снижает срок службы подшипника. Это видно из приведенной здесь формулы расчета ресурса подшипника:

L10 — номинальный ресурс подшипника, млн. оборотов;
С — динамическая грузоподъемность, кН (постоянная величина);
Р — эквивалентная динамическая нагрузка на подшипник, кН.

Виды балансировок

В зависимости от взаимного расположения оси вращения и главной центральной оси инерции x-x, по ГОСТ 19534-74, различают следующие виды неуравновешенности роторов:

  • статическая, когда эти оси параллельны (рисунок а);
  • моментная, когда оси пересекаются в центре масс ротора S (рисунок б);
  • динамическая (смешанная), когда оси либо пересекаются вне центра масс, либо не пересекаются, а перекрещиваются в пространстве (рисунок в).
Читать еще:  Что стучит в двигателе n42

Балансировка ротора может быть выполнена, в зависимости от конкретных условий и возможностей, на балансировочном станке или в собственных опорах.

Отдел технического сервиса ООО «Практическая Механика» обладает ресурсами для проведения балансировки любой сложности как на станках, так и в собственных опорах.

Балансировка роторов может быть выполнена как с помощью самых современных портативных приборов Leonova™ Infinity, так и с помощью более простых приборов, например, T30 или VIB-10. Описанная здесь процедура балансировки относится к Leonova™ Infinity.

Одноплоскостная балансировка, 4 пуска

Производится один замер исходного уровня вибрации ротора, за которым следуют три замера вибрации с навешиванием пробного грузика поочередно на 0°, 120° и 240° по плоскости ротора. Результатом является расчет веса и положения корректирующего грузика.

Одноплоскостная балансировка, фазовая

Производится один замер исходного уровня вибрации ротора, за которым следует один замер вибрации с навешиванием пробного грузика. Для измерения относительного фазового угла между двумя виброизмерениями используются синхронные усредняемые измерения вибрации, запускаемые импульсом от датчика тахометра. Результатом является расчет веса и положения корректирующего грузика.

Двухплоскостная балансировка, фазовая

Используется тот же фазовый метод, что и для одноплоскостной балансировки, но замеры вибрации и коррекции масс ротора производятся отдельно по двум плоскостям. Можно использовать один датчик вибрации, перенося его с плоскости на плоскость в процессе замеров. Удобнее использовать два датчика вибрации, подключив их к прибору Leonova с помощью 2-х канального кабеля или через балансировочный модуль.

По окончании любой балансировки можно провести контрольный замер вибрации для проверки успешности балансировки и, если необходимо, дополнительно уточнить вес и положение корректирующего грузика.

По окончании любой балансировки можно сохранить файл измерений по балансировке, включающий результаты измерений и результаты балансировки для конкретного оборудования.

Файл измерений по фазовой балансировке включает также балансировочную матрицу конкретного оборудования. Поэтому последующая фазовая балансировка этого оборудования с использованием сохраненного ранее файла измерений может производиться БЕЗ НАВЕШИВАНИЯ ПРОБНОГО ГРУЗИКА по желанию пользователя, что существенно упрощет процедуру балансировки.

Балансировка легко осуществляется шаг за шагом под руководством простых рисунков и указаний на дисплее прибора Leonova. Можно также задать другое направление вращения ротора или выбрать любую величину измерения вибрации: виброскорость, виброускорение или виброперемещение.

В добавление к измеренному среднеквадратичному значению величины вибрации выдается ее спектр, который ясно показывает наличие и долю дисбаланса в общем уровне вибрации. Таким образом, легко выявить сначала необходимость балансировки вообще, а затем подтвердить ее успешность в случае окончания работ.

Leonova рассчитывает и предлагает альтернативные варианты балансировки и устранения дисбаланса:

  • Максимально допустимый вес пробного грузика (г) рассчитывается на основании ввода в прибор радиуса, скорости вращения и веса ротора;
  • Корректирующий грузик разбивается на два отдельных грузика для навешивания на прилегающие секции ротора на основании ввода в прибор количества секций ротора;
  • Корректирующий грузик может быть заменен высверливанием материала с противоположной стороны ротора, при этом Leonova рассчитывает глубину сверления соответственно выбранному диаметру сверла и материалу ротора;
  • Leonova рассчитывает новый вес корректирующего грузика при сдвиге его по радиусу от исходного положения;
  • Место крепления грузика дается в виде угла или в виде расстояния по окружности ротора;
  • Пробный грузик может быть на выбор удален после замеров или же оставлен на месте;
  • Несколько корректирующих грузиков могут быть заменены одним.

Материал о приборах для балансировке предоставлен компанией «SPM Instrument».

Эффективна ли балансировка коленвала в домашних условиях?

Балансировка коленвала в домашних условиях может понадобиться тем, кто очень хочет полностью узнать свой автомобиль и не доверяет специалистам на СТО. Ниже будут рассмотрены все нюансы, связанные с этим вопросом.

Зачем нужна балансировка коленчатых валов?

Балансировка коленчатых валов является ничем иным, как механической операцией, вследствие которой значительно снижаются вибрации и прочие виды нагрузок на элементы двигателя. Это позволяет повысить его надежность, работоспособность и производительность. Безусловно, чаще всего в подобной операции нуждаются уже изношенные механизмы, хотя бывают случаи, когда дисбаланс наблюдается и в новеньком автомобиле, только что приобретенном из салона.

Понять то, что вам светит балансировка коленвала своими руками, и пора засучить рукава, можно по следующим признакам. Прежде всего, обратите внимание на ручку переключения передач во время движения на холостом ходу, она начинает болтаться. Точно также себя будет вести и сам двигатель, так что не забудьте заглянуть под капот своего «железного коня».

Что же насчет причин подобного поведения, так их может быть несколько. Среди них нельзя исключить и возможные погрешности, допущенные во время изготовления сопряженных деталей. Кроме того, не самым лучшим образом сказывается неоднородность материалов, из которых изготовлены элементы коленчатого вала. Появлению люфта также способствуют увеличенные зазоры в сопряженных узлах, их несоосность, некачественный монтаж и, конечно же, недостаточно точное центрирование.

И не стоит забывать о естественном износе, который никогда еще не играл положительной роли.

Где отбалансировать коленвал – варианты ремонта

Есть два способа, как отбалансировать коленвал. Первый – статический, он является менее точным. В этом случае используются специальные ножи, на которые и устанавливается деталь. А дисбаланс определяется по ее положению во время вращения. Если верхняя часть коленвала легче нижней, то на нее крепят грузики и производят такие замеры и догрузку до достижения равновесия. И только после этого на противоположной стороне высверливаются отверстия для противовеса.

Читать еще:  Датчик температуры двигателя автобус

Второй вид – динамическая балансировка коленчатого вала. Для ее осуществления необходимо специальное оборудование. Коленчатый вал устанавливается в плавающие постели и раскручивается до нужных оборотов. Световой луч находит и сканирует наиболее тяжелую точку, которая провоцирует тряску, и выводит ее на экран. А для достижения баланса дело остается за малым – удалить с нее лишний вес.

Балансировка коленвала в домашних условиях

В основном, в домашних условиях осуществляется балансировка коленвала с маховиком. Для этого также необходимо определить самую тяжелую точку. Делается это следующим образом: устанавливаются две Т-образные пластины, естественно по уровню, и сверху на них кладется деталь. В случае дисбаланса коленчатый вал будет катиться, пока его наиболее тяжелая точка не окажется в нижнем положении. Таким образом, определяется место, с которого необходимо снять немного металла. Повторять эту процедуру следует до достижения полного равновесия.

Если же речь идет о новых автомобилях, то в этом случае нужно прибегнуть к методу модульной сборки, когда все элементы проходят балансировку по отдельности, а не в сборе. Но осуществление данной процедуры лучше доверить профессионалам, тем более что, в основном, такие машины состоят на гарантийном обслуживании, и пренебрегать им не стоит. Не столь важно, где отбалансировать коленвал, главное помните, что данная процедура позволит значительно увеличить ресурс и мощность движка, да и авто в целом.

Балансировка (уравновешивание) вала

Вибрация от разбаланса укорачивает срок службы покрытия вала, повреждает подшипники и другие части машины, а также оказывает существенное отрицатель­ное влияние на продукт.

Из-за высоких скоростей вращения все валы должны балансироваться для уменьшения вибрации. Если вес вала удваивается, удваивается центробежная сила; но если удваивается скорость, центробежная сила увеличивается в четыре раза, что показывает важность балансировки при высоких скоростях.

Балансировка вала — это изменение положения центра тяжести так, чтобы он на­ходился на оси вращения.

Статическая балансировка. Если вал, закрепленный без трения, остается в со­стоянии покоя, независимо от того, в каком положении было остановлено его враще­ние, все локальные отклонения самокомпенсируются, и говорят, что имеет место статический баланс. Если вал статически не сбалансирован, на его «легкую» сторону необходимо добавить массу, достаточную, чтобы достичь баланса. Обычно это дела­ется путем сверления отверстия и добавления свинца до покрытия вала резиной. Статистическая балансировка применяется, в основном, для валов, работающих с окружной скоростью менее 180 м/мин. Однако валы, сбалансированные для одной скорости, необязательно находятся в состоянии баланса при другой скорости.

Динамическая балансировка. Даже если вал статистически сбалансирован, центр тяжести одного из его концов может быть смещен от центра, и тогда необходи­мо вносить коррекцию с другой стороны. Это изменение не может быть обнаружено простой статической балансировкой и становится заметным при ускорении враще­ния вала. При этом появляющиеся колебания (это явление известно как динамиче­ский или моментный дисбаланс) требуют анализа, чтобы определить один конец или оба требуют балансировки (противовесов).

В такой ситуации каждый конец может требовать своего собственного противо­веса, чтобы их сумма давала статический баланс. На поверхности резинового покры­тия несбалансированного прижимного вала может появиться плоский участок или покрытие может отделиться от стержня. Отделение может также произойти, если верхний вал несбалансирован.

Кинематическая балансировка. Когда вал изготовлен из трубы, ее стенки могут иметь различную толщину вдоль поверхности вала, а также по окружности трубы. Когда такой вал статически и динамически сбалансирован, а затем приведен во вра­щение с большой скоростью, возникают локальные нарушения баланса вдоль по­верхности, при этом тяжелые участки оболочки удаляются от центра. Когда форма вала меняется под действием неравномерности распределения его массы, возникаю­щее состояние называют кинематическим дисбалансом. Чтобы избежать этой про­блемы, рекомендуется использовать механически обработанный стержень (как внутри, так и снаружи), сбалансированный при рабочей скорости до установки по­крытия.

Статический дисбаланс выражается в килограммах на рабочую поверхность, а динамический дисбаланс может быть выражен в килограмм-сантиметрах и явля­ется мерой одной или нескольких сил, вызывающих вибрацию при вращении вала. Вибрация измеряется как линейное движение на концах вала. Требования к дина­мической балансировке должны быть выражены через амплитуду вибрации на концах вала при заданной скорости, измеренную регистрирующим измерителем вибраций. Для валов с заданным динамическим балансом минимальная амплитуда равна 0,13 мм на концах вала, в два раза больше, чем в центре вала при заданной скорости.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector