Sw-motors.ru

Автомобильный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Avr схема управления двигателями

Avr схема управления двигателями

Многообразие материалов на эту тему практически не оставляет шансов на оригинальность, но кое-что можно представить, дабы сократить время на поиск нужных решений и обозначить «подводные камни». И прежде всего представить практическое, без академичности, которая векторными диаграммами управления и матрицами отпугивает многих, а привлекает только тех, кому нужен реферат потолще.

Необходимо отметить, что выбор индуктивной нагрузки, коей является двигатель, вовсе не отвергает данное решение для управления освещением или нагревательными элементами. Двигатель, достаточно капризный элемент и не всякий подходит для данной схемы. И более того, режим плавного управления мощностью двигателя не всегда удается осуществить. Это зависит от многих факторов: мощность двигателя, инерционность нагрузки на валу, реактивные и активные параметры обмоток. Для надёжного решения всех этих проблем предназначены частотные инверторы. Тем не менее, данная схема значительно проще по сложности, чем частотное управление и иногда обеспечивает приемлемые результаты.

Вот совокупность всех аспектов проблемы управления:

  • Прежде всего, слово «микроконтроллер» в заглавии статьи, говорит о том, что управлять нагрузкой необходимо не потенциометром, (таких решений предостаточно), а именно микроконтроллером.
  • Обязательное наличие гальванической развязки.
  • Плавное управление мощностью, а не старт-стопное.
  • Контроль перехода через ноль (Zero-Cross).
  • Некоторые особенности выбора сглаживающего фильтра RC snubber.
  • Программная реализация событий управления на примере Atmega16A.
  • Обзор аналогичных решений в Интернете.


Схема 1. Узел управления нагрузкой.


Схема 2. Датчик перехода через ноль (Zero-Cross).

Цепи:

  • VCC – 5 вольт, питание низковольтной части узла, полученное стабилизатором напряжения;
  • GND – общая точка низковольтной части;
  • DRV – выход микроконтроллера, для управления нагрузкой (PC6 для Atmega16A);
  • ZERO — вход TTL-сигнала (PD2/INT0 для Atmega16A) от события перехода через ноль сети 220;
  • L,N — фаза и нейтраль сети 220;

Элементы:

  • MOC3052 — оптотриак (симистор), обеспечивающий гальваническую развязку;
  • BT136 — триак (симистор), обеспечивающий управление мощной нагрузкой;
  • BC847 – транзистор, управляющий MOC3052;
  • R1,R2 – делитель, запирающий транзистор по умолчанию.
  • RS,CS — сглаживающий фильтр RC snubber, необходимый только для индуктивной нагрузки.
  • PC814 — оптрон датчика Zero-Cross;
  • RZ0,RZ1 — токозадающие резисторы, двухваттные;
  • SN74HC14D – триггер Шмидта, для повышения помехоустойчивости;
  • М — двигатель, схема включения типа «звезда»;
  • CF — фазосдвигающий конденсатор.


Диаграмма фазового управления.

Оптрон PC814 обладает той особенностью, что содержит два внутренних светодиода, и реагирует на разнополярное напряжение при токе 10 мА. Поэтому характер импульсов сигнала ZERO именно такой, как показано на диаграмме. На токозадающих сопротивлениях RZ0 и RZ1 падает практически всё напряжение питающей сети, поэтому на их ваттности не надо экономить. Вместо двух последовательных сопротивлений можно использовать одно, соответствующего типа.

Сигнал ZERO попадает на микроконтроллер PD2/INT0 и вызывает аппаратное прерывание ниспадающим фронтом. Как будет показано далее, программа обработки прерывания запускает счетчик, время работы которого и будет определять фазовую задержку включения симистора относительно события перехода через ноль. Сигнал DRV формируется этой задержкой. На диаграмме показано, что передний фронт сигнала DRV смещается так, что энергетика на нагрузке уменьшается синхронно, через каждые 10 миллисекунд. Этого можно достичь только программным способом.

Если задача управления нагрузкой простая (включить/выключить) , то датчик Zero-Cross можно и не применять. Однако его использование уменьшает помехи при коммутации сильноточной нагрузки, да и режим, в котором пребывает силовой симистор более щадящий и он меньше нагревается. Используя данный подход в полном объеме, можно строить достаточно сложные воздействия на двигатель.

В представленной схемотехнике имеется один не большой «подводный камушек», о который можно споткнуться. При инициализации микроконтроллера может пройти достаточное время, это связано с конкретной задачей, когда его выходные сигналы находятся в третьем состоянии. В течении этого времени необходимо запереть транзистор BC847. Иначе возможен скачек напряжения, который пройдет на нагрузку.

Сглаживающий фильтр RC-snubber.

Необходимо иметь в виду, что при отключении и включении симистора из-за реактивного сопротивления обмоток может возникать короткий бросок и даже затухающие колебания на нагрузке. Для предотвращения этих бросков служит фильтр RS, CS. В литературе по триакам приводятся номиналы этих элементов: RS = 39 Ом, CS = 0.01 мкФ. При этом для мощности RS нет рекомендаций. Мой практический опыт говорит о том, что сопротивление RS горит так, что выгорает весь узел с симистором. При этом оборудование испытывалось, собственные колебания подавлены, работа стабильная, но иногда у заказчика происходит пробой узла. Причины этих возгораний носят случайный характер и систематизации не поддаются. Можно только предположить, что причиной может быть не сам узел симистор – двигатель, а наводимая на него через питающую сеть импульсная помеха от другого оборудования.

И так, для подавления собственных колебаний представленные номиналы вполне оправданы, и вообще-то не критичны. RS должно быть того же порядка, что и активное сопротивления двух обмоток (схема «звезда»). Собственные колебания могут быть от 1 до 10кГц. На этой частоте реактивное сопротивление CS от 16кОм до 1.6кОм, поэтому всё напряжение приложено к CS. Гораздо хуже, когда возникает внешняя импульсная помеха, её параметры не известны.

Поэтому мои рекомендации таковы:

RS эквивалентно активному сопротивлению обмоток, а мощность не менее двух ватт. CS большего номинала чем 0.01 мкФ, с напряжением 400V и более.

Вот здесь есть интересные материалы на эту тему:

Программная реализация управления.

Пример программы реализован в проекте AVR-studio Ver 4.18 build 716.

  • Частота процессора 8 МГц внутренняя без кварца.
  • Регистр счетчика TCCR2 настроен на внутреннее прерывание с периодом 20 мкс.
  • Программа обработки этого прерывания SIGNAL(SIG_OUTPUT_COMPARE2) вызывает процедуру drv_act().
  • Процедура drv_act() в зависимости от флага drv_faza0 запускает счетчик задержки относительно момента перехода через ноль.
  • Процедура обработки прерывания SIGNAL (SIG_INTERRUPT0) от датчика Zero-Cross управляет флагом drv_faza0.
  • Весь период полуволны в 10 мс разбивается на 500 значений задержки.
  • В массиве pwm_array[] заранее формируется набор задержек. Перебор индекса массива происходит в программе обработки прерывания SIGNAL (SIG_INTERRUPT0).

Более подробно см. проект.

Ниже будет описано, что можно получить, манипулируя полуволнами, но автор, работая над реальным проектом управления двигателем, не ограничился статическими значениями задержек. Для более стабильного результата была реализована следящая система поддержания заданных оборотов двигателя на основе тахометра. Программно это поддержано в процедуре NormalCtrl(), но описания этой части не входит в рамки данной статьи.

Управление двигателем с помощью манипуляций полуволнами.

  • Двигатель: асинхронный , 3 фазы, 250 Ватт, 220 В, 2730 об/мин, тип АИР56В2N3.
  • Фазосдвигающий конденсатор CF = 10мкФ х 400 В.
  • Активное сопротивление каждой обмотки Ra = 39 Ом.
  • RS = 46 Ом, CS = 0.22 мкФ.
  • Двигатель не нагружен, холостой ход.
  • Напряжения снимались через резистивный делитель относительно нейтрали N.

На диаграммах 1,2,3 зелёный график – напряжение на нагрузке (LOAD), жёлтый график – точка между сопротивлением RZ1 и PC814, она показывает реальные моменты перехода через ноль.

При определённой задержке фазы включения симистора, близкой к той, что показана на диаграмме 1, наблюдалась устойчивая работа двигателя на оборотах в два раза меньше максимальных. Однако незначительное уменьшение этой задержки, приводило к тому, что двигатель, постепенно разгоняясь, выходил на полные обороты и симистор открывался полностью, игнорируя управляющее воздействие.

Читать еще:  Cbr954rr стук в двигателе


Диаграмма 1. Начало вращения, постепенный набор оборотов.


Диаграмма 2. Обороты, близкие к максимальным, вырождение участков закрытого симистора.


Диаграмма 2. Обороты максимальные, симистор открыт.

Можно предположить, что срыв работы симистора, как управляющего элемента, объясняется динамическим изменением реактивной составляющей сопротивления обмоток двигателя, в результате чего симистор переходит в открытое состояние. К этим сложностям добавляется то обстоятельство, что неустойчивость симистора так же зависит и от момента на валу двигателя. Если удалось подобрать фазы задержек на холостых оборотах, то при нагрузке для устойчивой работы эти параметры будут совершенно иными.

Однако же заставить работать двигатель на оборотах, кратных максимальным можно. Получить достаточно плавную регулировку, правда, не получится. Самое же проблематичное это получить вращение двигателя при оборотах в диапазоне 0.75MAX

Автоматический ввод резерва

Автоматическое включение резерва — включение автоматическим устройством резервного оборудования взамен отключившегося основного. Широко применяется в энергетике, служит для обеспечения бесперебойного электроснабжения потребителей. [1] [2] [3]

В энергетике: автомат включения резерва (АВР) — автоматическое устройство, осуществляющее автоматический ввод резервных источников питания или включение выключателя, на котором осуществляется деление сети. [4] :78

Потребители: коммутационный аппарат переключения (переключатель питания) (англ. Transfer switch ) — аппарат для переключения одной или нескольких цепей нагрузки от одного источника к другому. [5] :п. 2.1.1

Отдельные установки: автоматическое включение электродвигателей резервных механизмов — включение резервного оборудования при выявлении нарушения технологического режима с помощью реле, реагирующих на неэлектрические величины. [4] :109

На 2018 год в России отсутствует единая терминология для сетей электроснабжения и электроэнергетики в области надежности электроснабжения. [6]

Нормативно оборудование для переключения питания с одного источника на другой делится на: [7]

  • с вентильными переключающими аппаратами переменного тока;
  • c релейно-контакторными переключающими аппаратами переменного тока (IEC 60947-6-1);
    • коммутационная аппаратура ручного переключения (РКАП);
    • коммутационная аппаратура дистанционного переключения (ДКАП);
    • коммутационная аппаратура автоматического переключения (КААП); [8]
  • для переключения источников постоянного тока;
  • коммутационные устройства с подключением к источнику бесперебойного энергоснабжения (IEC 62040).

Содержание

  • 1 Автомат включения резерва
    • 1.1 Принцип действия
  • 2 Коммутационный аппарат переключения (переключатель питания)
    • 2.1 Автоматический
  • 3 См. также
  • 4 Источники
  • 5 Примечания
  • 6 Ссылки

Автомат включения резерва [ править | править код ]

Автоматическое восстановление питания должно обеспечиваться для:

  • электроприемников первой категории — обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания;
  • особая группа электроприемников первой категории — обеспечиваются электроэнергией от трех независимых взаимно резервирующих источников питания. [9]

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьёзным последствиям. Гарантированное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токикороткого замыкания при параллельной работе источников питания гораздо выше, чем при раздельном питании потребителей.
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании.
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определённого режима работы системы.
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторную батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет справиться с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно предусматривают такую логику защиты, которая отключит наименее важных потребителей тока обеих систем.

АВР разделяют на:

  • АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР подключит резервную секцию.
  • АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.
  • АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени он включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников не допустима, то сначала отключается секционный выключатель, а затем включается вводной. Схема вернулась в исходное состояние.
  • АВР без восстановления.

АВР должен срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с неустранённым коротким замыканием.

АВР должен срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.

Принцип действия [ править | править код ]

Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.

В качестве измерительного органа для АВР в высоковольтных сетях служат реле минимального напряжения (реле контроля фаз), подключённые к защищаемым участкам через трансформаторы напряжения. В случае снижения напряжения на защищаемом участке электрической сети реле даёт сигнал в схему АВР. Однако, условие отсутствия напряжения не является достаточным для того, чтобы устройство АВР начало свою работу. Как правило, должен быть удовлетворён ещё ряд условий:

  • На защищаемом участке нет неустранённого короткого замыкания. Так как понижение напряжения может быть связано с коротким замыканием, включение дополнительных источников питания в эту цепь нецелесообразно и недопустимо.
  • Вводной выключатель включён. Это условие проверяется, чтобы АВР не сработало, когда напряжение исчезло из-за того, что вводной выключатель был отключён намеренно.
  • На соседнем участке, от которого предполагается получать питание после действия АВР, напряжение присутствует. Если обе питающие линии находятся не под напряжением, то переключение не имеет смысла.

После проверки выполнения всех этих условий логическая часть АВР даёт сигнал на отключение вводного выключателя обесточенной части электрической сети и на включение межлинейного (или секционного) выключателя. Причём, межлинейный выключатель включается только после того, как вводной выключатель отключился. АВР подразделяется также на системы с восстановлением и без восстановления: при работе с восстановлением при возникновении напряжения на вводе с установленной выдержкой схема восстанавливает исходную конфигурацию. Обычно данный режим выбирается установкой накладок вторичных цепей в соответствующее положение. При восстановлении АВР допускается кратковременная работа питающих трансформаторов «в параллель» для бесперебойности электроснабжения.

В низковольтных сетях одновременно в качестве измерительного и пускового органа могут служить магнитные пускатели или модуль АВР-3/3. Либо предназначенный для управления схемами АВР микропроцессорный контроллер АВР.

Коммутационный аппарат переключения (переключатель питания) [ править | править код ]

Автоматический [ править | править код ]

Коммутационная аппаратура автоматического переключения — аппаратура автономного действия, состоящая из коммутационного аппарата (аппаратов) переключения и других устройств, необходимых для контроля цепей питания и переключения одной или нескольких цепей нагрузки от одного источника питания к другому. [5] :п. 2.1.2

Читать еще:  Электрические двигатели поиск неисправностей

Автоматические переключатели питания делятся на оборудование:

  • постоянного тока;
  • переменного тока
    • использующие релейно-контакторные схемы;
    • с непрерывной подачей питания при переключении нагрузок;
    • источники бесперебойного питания. [7] :п.1

При автоматическом переключении обеспечивается гарантированное электропитание, когда допускается перерыв на время ввода в действие резервного источника. Бесперебойное электропитание с «мгновенным» вводом в действие резервного источника обеспечивает источник бесперебойного электропитания. [10]

Возможно использование автоматической коммутационной аппаратуры не только во время длительных отключений рабочего источника питания, но и при кратковременных провалах напряжения. Если допустимое время перерыва питания меньше 0,2 с возможно только использование источников бесперебойного питания, защита автоматическими выключателями цепи с коротким замыканием для уменьшения времени перерыва питания в таком случае невозможна или неэффективна. Если допустимое время более 0,2 с возможно использование защит электросети или использование источников бесперебойного питания. При допустимом времени 5…20 с возможно отказаться от источников бесперебойного питания и использовать автоматическую коммутационную аппаратуру. [11] :с. 61

Типовые решения по автоматическому вводу резерва ONI

Автоматический ввод резерва (АВР) ONI позволяет оперативно восстанавливать подачу электроэнергии в аварийных ситуациях.

Система АВР обеспечивает бесперебойным электропитанием оборудование от двух независимых источников электроснабжения.

Бесперебойность электроснабжения достигается путем переключения потребителей с основного источника электроснабжения на резервные при:

  • Обрыве одной из фаз питающей сети
  • Повышенном напряжении питающей сети
  • Пониженном напряжении питающей сети
  • Асимметрии напряжения фаз питающей сети
  • Нарушении последовательности чередования фаз

Область применения

Варианты исполнения

2 ввода 1 потребитель 220В АС

2 ввода 2 потребителя 220В АС

1 или 2 ввода и ДГУ 1 потребитель

2 ввода 1 потребитель 24В DC

2 ввода 2 потребителя 24В DC

2 ввода и ДГУ 2 потребителя

Преимущества

  • Область применения
  • Реализуемые функции
  • Состав решения
  • Варианты исполнения
  • Преимущества
  • Документация
  • Программное обеспечение
  • Альбом решений

Данное решение предназначено для эксплуатации в составе систем:

  • электрических подстанций;
  • транзитных линий, которые нормально работают с разрывом транзита;
  • силовых трансформаторов и секционных выключателей;
  • распределительных сетей 0,4 кВ, питающих важные объекты жизнедеятельности (котельные, насосные станции, очистные сооружения и др.);
  • в жилых, офисных и общественных зданиях.
  • мониторинг распределительных сетей от основного источника;
  • подача сигнала на запуск резервного источника питания (например, если в качестве независимого источника используется ДГУ (дизель-генераторная установка));
  • перевод нагрузки на резервный источник питания;
  • подача сигнала на возврат к основному источнику питания;
  • перевод нагрузки на питание от сети;
  • задержка времени отключения (для обеспечения необходимости дать ДГУ остыть перед отключением);
  • механическая блокировка, которая предотвращает переключение подачи электроэнергии от разных источников при помощи силовых кабелей или кабелей системы управления;
  • ручной режим переключения на альтернативный источник питания.

Все реализуемые функции автоматического управления осуществляются программируемым логическим реле ONI PLR-S. Реле контроля фаз следит за качеством электропитания каждого из источников. Управление АВР, его настройка и мониторинг могут осуществляться как по месту, так и с удаленного АРМ по стандартному протоколу Modbus RTU через сеть RS-485.

В состав решения входят:

  • контакторы;
  • реле контроля фаз (напряжения);
  • программируемое логическое реле ONI PLR-S;
  • кнопки местного управления;
  • местная панель управления (опция);
  • автоматические выключатели (опция);
  • блок бесперебойного питания (опция);»
  • графическая панель оператора с диагональю 4,3 дюйма ONI ETG.

По требованию заказчика базовая схема может быть дополнена различными опциональными элементами: кнопками ручного перехода на нужную сеть, кнопкой ручного возврата на приоритетную сеть, переключателем выбора приоритетной сети, модулем дискретного ввода/ вывода для дистанционного управления и мониторинга состояний сетей и самого АВР.

Возможны следующие варианты исполнения для автоматического ввода резерва:

  • два ввода на общую систему шин (основной и резервный);
  • два рабочих ввода на две секции шин с секционированием;
  • два рабочих ввода на две секции шин с секционированием плюс один ввод от ДГУ.

Преимущества АВР на контакторах:

  • низкая цена;
  • защитные функции.

Ограничения для АВР на контакторах:

  • время переключения от 16 до 120 мс;
  • сравнительно небольшое количество циклов срабатывания.

Шкаф АВР на автоматическом выключателе состоит из переключателя, моторного привода и реле контроля фаз.

Преимущества АВР на автоматическом выключателе:

  • простота монтажа и обслуживания;
  • возможность работы в ручном режиме;
  • высокая надежность за счет малого количества элементов.

Ограничения для АВР на автоматическом выключателе:

  • относительно высокая цена;
  • отсутствие защитных функций.
  • 20181102 Альбом схем готовых решений АВР-ДГУ-I. AutoCAD. Скачать
  • 20181102 Альбом схем готовых решений АВР-ДГУ-I. PDF. Скачать
  • 20181201 Альбом схем готовых решений АВР-II. AutoCAD. Скачать
  • 20181201 Альбом схем готовых решений АВР-II. PDF. Скачать
  • Инструкция АВР+ДГУ 4.0. MS Word. Скачать
  • Инструкция АВР+ДГУ 4.0. PDF. Скачать
  • Как загрузить программу в ONI PLR-S. Скачать

Программы для панелей оператора

  • Программа для панели оператора ETG4 v4.0. Скачать
  • Программа для панели оператора ETG7 v4.0. Скачать

Программы для программируемого логического реле

  • АВР 1 ввод с ДГУ 1 потребитель 24VDC. Скачать
  • АВР 2 ввода 1 потребитель 24VDC. Скачать
  • АВР 2 ввода 1 потребитель 220VAC. Скачать
  • АВР 2 ввода 2 потребителя 24VDC. Скачать
  • АВР 2 ввода 2 потребителя 220VAC. Скачать
  • АВР 2 ввода c ДГУ 1 потребитель 24VDC. Скачать
  • АВР 2 ввода с ДГУ 2 потребителя 24VDC. Скачать

Программное обеспечение для ONI PLR

  • ONI PLR Studio-v3.4.1.6-Setup. Скачать

Программное обеспечение для панелей оператора

  • ONI Visual Studio-2.6.10990.0. Скачать
  • ONI Visual Studio-2.6.10990.0-ForXP. Скачать

Схема компоновки запуска генератора с блоком АВР-1/1

Схемы подключения блока АВР-1/1 с автоматическим управлением запуском и контролем работы мобильной генераторной установки и ввода городской сети.

На Рис.2 представлена одна из рабочих схем подключения блока управления АВР-1/1М . Проводники, подключенные к блоку, отображены схематично, без привязки к конкретным клеммам. Компоновка достаточно проста в реализации и под силу пользователям даже с начальным уровнем электротехники.
На Рис.3 изображена производная схема от схемы на Рис.2, с дополнительными элементами защиты, автоматическим зарядным устройством и с полной прорисовкой подключения проводников к клеммам контроллера АВР-1/1.

У нас Вы можете заказать готовый к установке щит АВР с резервным вводом генератора собранный по схеме Рис.3 любой мощности или заказать монтаж и подключение под ключ.

Начало пути.

Как правило, вопрос по автоматизированному управлению вводом генератора и вводом сети возникает, когда пришлось столкнуться с рядом неудобств ручного управления вводами. Первоначально, для ручного управления, собирают, в большинстве случаях, самую простую схему на 2-х автоматических выключателях Рис.1. без элементов защиты.

За основу будут взяты ввод 220В/50Гц городской однофазной сети 1, однофазный счетчик электроэнергии 2, автоматические выключатели А1 на 25 ампер с характеристикой С и автоматический выключатель А2 на 25 ампер с характеристикой В, подключаемая нагрузка 3(Дом) и однофазный бензиновый генератор с электростартером на 6,5 кВт позиция 4.
Работает все очень просто. Когда есть напряжение в сети, оно проходит через счетчик 2, автоматический выключатель А1 к нагрузке 3. Автомат А2 выключен. При пропадании сети отключают автомат А1, запускают генератор 4 и включают автомат А2. Нагрузка подключена к генератору. Появилась сеть — выключают автомат А2, включают автомат А1 и глушат генератор.

Собираем автоматику АВР.

На Рис.2 изображены следующие элементы:

1 — ввод городской сети 230В/50Гц

2 — бытовой однофазный счетчик электроэнергии

3 — потребитель электроэнергии (нагрузка)

4 — автономная генераторная установка (бензиновый генератор с электростартером на 6,5 кВт)

Читать еще:  Двигатель авс расход топлива

5 — модуль управления АВР-1/1 (контроллер)

А1 — автоматический выключатель 2-х полюсный (С25А)

А2 – автоматический выключатель 2-х полюсный (В25А)

В1 — выключатель нагрузки 2-х полюсный (32А)

В2 – выключатель нагрузки 2-х полюсный (32А)

КМ1 — контактор 3-х полюсной с дополнительным нормально-замкнутым контактом (25А 230В/АС3 1НЗ).

КМ2 – контактор 3-х полюсной с дополнительным нормально-замкнутым контактом (25А 230В/АС3 1НЗ).

УГ – жгут проводников управления генератором ( стартер, питание, заслонка, зажигание, топливный клапан)

Что ставим? Для чего?

Позиции 1, 2, 3, 4, А1, А2 – остаются от схемы на Рис.1, поэтому нам потребуется все остальное.

Выключатель нагрузки В1 (БАЙПАС): Служит для разрыва цепи сеть-дом при работе в автоматическом режиме и подключения сети к дому в ручном режиме. Ставим номиналом не меньше чем автоматический выключатель А1. Если не получится приобрести выключатель нагрузки – устанавливаем автоматический выключатель с номиналом выше чем у А1. Установлен А1 на 25 ампера с характеристикой С — ставим на 32 ампера с характеристикой С. Ставим мощнее, чтобы при перегрузках срабатывал автомат А1.

Выключатели нагрузки В2 (БАЙПАС)(на Рис.3 обозначен Q3): На схеме выделен синим пунктиром. Служит для подключения генератора к дому в ручном режиме, при отключенном блоке АВР-1/1. В автоматическом режиме находится в разомкнутом состоянии. Ставим номиналом не менее автомата А2, если не получится приобрести выключатель – устанавливаем автоматический выключатель с номиналом выше чем у А2. Установлен А2 на 25А с характеристикой С — ставим С32А. Ставим мощнее, чтобы при перегрузках срабатывал автомат А2. Но есть и обратная сторона такого решения. Получается очень слабый узел по безопасности. Контакторы КМ1 и КМ2 будут с блокировкой от «встречного включения напряжения», а выключатель В2 будет обходить эту защиту. Лучшем решением, будет установить кнопки СТАРТ-СТОП на «самоподхвате» от дополнительного NO контакта контактора КМ2. Кнопки стоят дороже выключателя, но сохраняют защиту. Кнопки будут управлять принудительным включением/отключением катушки контактора КМ2 при работающем в ручном режиме генераторе.

Контактор КМ1 берем малогабаритный промышленного назначения с категорией применения АС-3 и номиналом как и автомат А1 на 25А. Можно применять и модульные контакторы, но они, как правило, выпускаются с категорией применения АС-1, а под АС-3 их номинал нужно уменьшать в 3-4 раза. Промышленные контакторы дешевле модульных и позволяют расширять возможности автоматизации АВР за счет дополнительных приставок.
Контактор К1 должен иметь вспомогательный нормально закрытый контакт для осуществления электрической блокировки от встречного напряжения. Установка механической блокировки, дополнительно увеличит степень защиты.

Контактор КМ2 — выбираем с номиналом автоматического выключателя А2. Ставим на 25А. Используем рекомендации как и при выборе КМ1.

Жгут управления генератором — будет состоять из 7-ми одножильных, многопроволочных проводов типа ПУГВ сечением от 1 до 1,5мм2:

•Стартер – 1 провод (на Рис.2/3 зеленый цвет). Управляет автоматическим включение стартера. Подключается к штатному плюсовому выводу реле стартера генератора через клеммный переходник. От контакта реле стартера (на фото указан стрелкой) проводник идет на дополнительно установленное промежуточное 12 вольтовое реле с током нагрузки от 30А на нормально разомкнутый контакт. Промежуточное реле управляется через клеммы контроллера 9-10. Пусковые токи на реле стартера достаточно высокие и промежуточное реле возьмет нагрузку на себя.

•Питание – 2-а провода (на Рис.2 оранжевый цвет) Подключаются к аккумулятору генератора, т.к. контроллер питается от постоянного напряжения 12В. Один провод подключаем к плюсовой клемме расположенной на реле стартера (указана на фото стрелкой) а второй к массе (минус) генератора расположенной на картере левее. Можно подключить к любому 12 вольтовому источнику резервного питания постоянного тока.

Еще один важный момент при работе в ручном режиме переключения!
При переходе на ручной режим переключения вводами, необходимо обесточить клемму 19 питания блока АВР-1/1. Это полностью отключит автоматику. На схеме Рис.3 этот выключатель обозначен Q1. Можно отключать путем отсоединения проводника питание от одной из клемм модуля или клеммной колодки.

•Зажигание — 1 провод (на Рис.2/3 голубой цвет). Служит для автоматического управления разрешением работы/глушения генератора. Подключается к проводу (обычно желтого цвета) датчика реле уровня масла (указан стрелкой на фото). Управляется через контакты 24-25 контроллера АВР-1/1 и промежуточное 12VCD реле на 20-30А с нормально-закрытым контактом, на схеме Рис.3 обозначено К2. Для разрешения работы контакт размыкается. Глушится генератор замыканием контакта.

•Заслонка— 2 провода (на Рис.2/3 желтый цвет). Управляет положением воздушной заслонки карбюратора при пуске генератора через электропривод. Сам привод приобретается отдельно или заказывается у нас. Достаточно установить автомобильный 2-х проводной привод. Его усилия и хода штока, в большинстве случаев, достаточно для перемещения заслонки в крайние положения. Устанавливается он на раму генератора или кронштейн карбюратора, зависит от модели генератора, и через тягу управляет перемещением заслонки. На фото привод установлен на раму генератора через переходник и управляет воздушной заслонкой типа «рычаг». Обычно хватает крепежа из комплекта, идущего к электроприводу. АВР-1/1 самостоятельно меняет полярность на проводах управления и тем самым управляет электромотором механизма привода.

Топливный клапан – 1 провод (на Рис.2 фиолетовый цвет). Управляет закрытием подачи топлива на ЭМ клапане при отключенном генераторе. Сам клапан приобретается отдельно или заказывается у нас. Мощность катушки клапана выбираем минимальную 7-10 Вт. Чем мощней — тем будет сильнее греться, и придется решать задачу снижения температуры. Плюсовой проводник от электромагнитного клапана подключаем к плюсу батареи генератора. Минусовой проводник от клапана идет через нормально открытый контакт промежуточного реле К2 (см. Рис.3) и далее на минусовую клемму.
При включении контроллером команды «разрешения работы» сработает промежуточное реле К2, замкнется нормально открытый контакт и откроет топливный клапан. Топливо начнет поступать в карбюратор, подготавливая генератор к запуску. После «глушения» генератора, реле К2 отключится, контакты разомкнутся и подача топлива будет перекрыта.

Устанавливать или нет электромагнитный клапан каждый решает самостоятельно. При автоматическом управление, топливный кран на баке будет открыт постоянно и если игла клапана поплавковой камеры карбюратора не перекроет подачу топлива, произойдет утечка топлива.

Размещаем перечисленные элементы, кроме клапана и привода, в электрическом щите подходящего размера, производим подключение проводников.

Сам алгоритм работы блока АВР-1/1М описан на странице с техническим описанием .

Подключаем ввод сети, в точке ( см. Рис.2) после автоматического выключателя А1 и перед выключателем В1, подключаем ввод генератора в точке после выключателя В1. Устанавливаем перемычку на клеммы 11-12 контроллера АВР-1/1 (См. Рис.3), для установки режима NO_IC6000 и возврата воздушной заслонки после запуска генератора.
Для перехода в автоматический режим управления выключаем выключатель нагрузки В1, подаем напряжение питание постоянного тока =12В на модуль АВР-1/1. Для отключения автоматики, проделываем все в обратной последовательности.

Все! Теперь можно наслаждаться автоматически управляемым вводом резервного питания генератора, не беспокоится за «скачки» и «просадки» напряжения в сети и генераторе, т.к АВР-1/1 следит за всем.

Сомневаетесь в правильности выбора ?
Сложная задача ?
Нужна техническая консультация ?

Оставьте запрос, нажав на кнопку КОНСУЛЬТАЦИЯ, и наш технический специалист свяжется с Вами и поможет разобраться.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты