Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Без атомной энергии галактики не освоить

Атомный ракетный двигатель принцип работы

Покорение космоса и освоение дальних планет — мечта человечества. Исполнить ее вряд ли удастся без атомных технологий. О том, как эффективно использовать атом в космосе, какими должны быть мощность и стартовая масса ракеты для полета на Марс, о принципах работы ядерных ракетных двигателей и перспективных космических проектах Росатома рассказывает заместитель главного конструктора НИКИЭТа Елена Ромадова.

Автор: Ирина Сухарева

Сегодняшняя тема — космическая ядерная энергетика. Мы поговорим о принципах работы ядерных космических установок, об истории их создания, о современных разработках в этой области и о перспективах развития космической энергетики.

Практическое освоение космоса началось 4 октября 1957 года с запуска первого в мире искусственного спутника Земли на околоземную орбиту. В этом году мы будем отмечать 60 лет этого знаменательного события. С того момента космонавтика начала развиваться стремительными темпами: первый полет Ю. А. Гагарина в космос, первый выход человека в открытый космос, высадка человека на Луну, первая стыковка в космосе, высадка космических аппаратов на поверхность других планет, многолетняя эксплуатация орбитальных станций и так далее.

Космос сегодня — это:

  • глобальная спутниковая связь и телевещание;
  • высокоточная космическая навигация, метео- и экологический мониторинг;
  • дистанционное зондирование Земли с целью изучения природных ресурсов, картографии;
  • фундаментальные космические исследования;
  • пилотируемые полеты на долговременных орбитальных станциях с выполнением программы научно-прикладных исследований.

Из этого перечня следует, что современная космонавтика решает, главным образом, задачи информационного обеспечения.

И связано это прежде всего с тем, что возможности наращивания энергетики космического применения на старых принципах практически исчерпаны. Поэтому для решения более энергоемких задач в космосе необходимо создание мощной энергетики, и прежде всего за счет использования ядерной энергии.

Энергетика космических аппаратов подразделяется на два основных направления:

  • энергетика для обеспечения движения космического аппарата;
  • энергетика для электрообеспечения бортовой аппаратуры и полезной нагрузки.

Елена Леонардовна Ромадова окончила МВТУ им. Н. Э. Баумана по специальности «Ядерные энергетические установки» в 1984 году. Ее специализация — «Космические ядерные энергетические установки».

После учебы первым местом работы Е. Ромадовой стал НИИАР в Димитровграде, где она занималась научно-техническими разработками в области быстрых натриевых реакторов (БН‑600).

Работала как на экспериментальных стендах, так и на исследовательском реакторе БОР‑60. В 1997 году защитила кандидатскую диссертацию.

С 1999 года Е. Ромадова работает в НИКИЭТе. Сегодня она занимает должность заместителя главного конструктора космических ядерных энергоустановок.

Увлекается музыкой, живописью, спортом (большой теннис, горные лыжи, фитнес, яхтинг.) Недавно получила международный сертификат яхтенного капитана.

О видах ракетных двигателей
Для обеспечения движения космических аппаратов используются реактивные ракетные двигатели. По назначению они подразделяются на основные и вспомогательные.

Основные ракетные двигатели обеспечивают разгон ракет-носителей и космических аппаратов до требуемых скоростей полета, перевод космического аппарата с орбиты искусственного спутника Земли на траекторию полета к другим планетам, посадку на планету и так далее. Вспомогательные двигатели используются для управления полетом ракеты и космического аппарата, ориентации и стабилизации космического аппарата, разделения частей ракеты-носителя и других операций.

Но независимо от назначения принцип работы любого ракетного двигателя заключается в преобразовании определенного вида энергии в кинетическую энергию. В зависимости от типа преобразуемой энергии практически все ракетные двигатели подразделяются на тепловые и электрические.

В настоящее время наибольшее распространение получили химические двигатели. Этот тип двигателей на сегодняшний день — единственный, который массово используется для выведения в открытый космос космических аппаратов. По сути эти двигатели являются двигателями внутреннего сгорания. Рабочее тело в них — горячий газ, образующийся при реакции горючего с окислителем в камере сгорания. Продукты химической реакции из камеры сгорания попадают в сопло Лаваля, обеспечивающее максимальное преобразование тепловой энергии в кинетическую. Химические ракетные двигатели делятся на жидкостные, твердотопливные и комбинированные, в зависимости от агрегатного состояния ракетного топлива.

Ядерные ракетные двигатели (ЯРД) относятся к тепловым. Они используют энергию деления или синтеза ядер для создания реактивной тяги.

Сегодня мы не будем рассматривать ядерные ракетные двигатели, основанные на синтезе ядер, потому что это дело далекого будущего. Пока в этой области разрабатываются только проекты. Зато уже доказано, что ядерные ракетные двигатели, принцип работы которых основан на реакции деления урана, создавать и использовать можно.

Существуют различные ЯРД: твердофазные, жидкофазные и газофазные, соответственно агрегатному состоянию ядерного топлива в активной зоне реактора.

Второй тип двигателей — это электрические ракетные двигатели. Их принцип работы основан на преобразовании электрической энергии в направленную кинетическую энергию частиц. Однако такому двигателю необходим внешний источник электроэнергии.

Такие двигатели уже опробованы в космосе. Ведутся работы по значительному улучшению их характеристик.

Как же определить, какой из двигателей лучше? На первый взгляд кажется: чем двигатель мощнее, то есть чем больше его тяга, тем он лучше. Однако на практике все гораздо сложнее. Один из важнейших параметров, характеризующий эффективность и экономичность двигателя, — это его удельный импульс.

Удельный импульс — это количество секунд, которое данный двигатель проработает на одном килограмме топлива, создавая тягу в 1 ньютон. То есть чем больше удельный импульс, тем меньше расход рабочего тела и, следовательно, стартовая масса корабля, что становится особенно важным при осуществлении экспедиций к дальним планетам.

Так, химические ракетные двигатели, в частности современные жидкостные, имеют удельный импульс около 450 секунд. И это практически их предел, обусловленный законами физики. Зато их тяга составляет сотни тонн, поэтому никакая другая техника не в состоянии более надежно и экономично поднять груз с Земли и вывести его на околоземную орбиту.

Но для полетов к звездам и другим галактикам, для осуществления пилотируемой экспедиции на Марс ЖРД, конечно, не оптимальны. Для этих задач нужны значительно бо́льшие значения удельного импульса — тысячи секунд.

Читать еще:  Ямз сколько двигателей в год

И здесь безусловными лидерами являются электрические ракетные двигатели, у которых уже сейчас достигнут импульс порядка 1500–4000 секунд. Результаты разработок ЭРД в мире, в том числе наших коллег из Центра Келдыша, убедительно доказывают, что удельный импульс порядка 7000–10 000 секунд реально достижим, и это именно тот импульс, который нужен для покорения дальнего космоса.

Однако специфика ЭРД — относительно малая тяга, величина которой непосредственно зависит от располагаемой на борту космического аппарата электрической мощности. Увеличение тяги ЭРД потребует соответственного увеличения мощности бортовых источников энергии. Его можно достичь с помощью либо солнечных, либо ядерных энергетических установок. Но если говорить о полетах в другие галактики, надо помнить, что Солнца там уже нет. Поэтому ядерная энергетика становится безальтернативной.

Промежуточное место по тяге и импульсу занимают ядерные ракетные двигатели. Их импульс примерно вдвое превышает импульс химических двигателей, и в промежуточном значении находится тяга.

В книге «Пилотируемый полет на Марс», выпущенной Академией космонавтики, сравниваются различные варианты осуществления пилотируемой марсианской экспедиции: с помощью ядерных и электрических ракетных двигателей. Оба варианта имеют право на существование, но сегодня общепризнанно, что наиболее перспективны все-таки электрические ракетные двигатели, при условии наличия большой электроэнергии для их питания.

Если мощность источника энергии для питания электрических ракетных двигателей составит 15 МВт, то длительность полета туда и обратно с пребыванием космонавтов на планете Марс порядка 30 дней составит 734 суток, то есть почти два года. При этом стартовая масса корабля будет всего 300 тонн. Это очень хороший показатель. Если мощность будет 50 МВт, то лететь придется чуть меньше года, 328 дней, зато стартовая масса корабля увеличится до 700 тонн. Стоило бы найти оптимальное соотношение стартовой массы, мощности и длительности полета. Но в любом случае, как я уже говорила, для осуществления дальних полетов ядерная энергетика необходима.

Ядерные двигатели в крылатых ракетах. Досье

ТАСС-ДОСЬЕ. 19 июля 2018 года в Минобороны сообщили журналистам, что Россия готовится провести летные испытания опытных образцов усовершенствованной крылатой ракеты «Буревестник» с ядерным двигателем. В ведомстве указали, что малозаметная крылатая ракета с практически неограниченной дальностью, несущая ядерную боевую часть, является неуязвимой для всех существующих и перспективных систем как противоракетной, так и противовоздушной обороны.

Редакция ТАСС-ДОСЬЕ подготовила справочный материал о проектах использования ядерных двигателей в крылатых ракетах.

Ядерные двигатели

Идея использовать ядерные двигатели в авиации и космонавтике возникла в 1950-х годах вскоре после создания технологии управляемой атомной реакции. Плюсом такого двигателя является длительное время работы на практически не расходуемом в полете компактном источнике топлива, что означает неограниченную дальность полета. Минусами были большой вес и габариты атомных реакторов того времени, сложность их перезарядки, необходимость обеспечения биологической защиты обслуживающего персонала. С начала 1950-х годов ученые СССР и США независимо друг от друга изучали возможность создания разных типов атомных двигателей:

  • ядерный прямоточный воздушно-реактивный двигатель (ЯПВРД): в нем поступающий через воздухозаборник воздух попадает в активную зону реактора, нагревается и выбрасывается через сопло, создавая нужную тягу;
  • ядерный турбореактивный двигатель: действует по похожей схеме, но воздух перед попаданием в реактор сжимается компрессором;
  • ядерный ракетный двигатель: тяга создается за счет нагрева реактором рабочего тела, водорода, аммиака, других газов или жидкостей, которые затем выбрасываются в сопло;
  • ядерный импульсный двигатель: реактивную тягу создают поочередные ядерные взрывы малой мощности;
  • электрореактивный двигатель: вырабатываемая реактором электроэнергия используется для нагрева рабочего тела до состояния плазмы.

Наиболее подходящими для крылатых ракет и самолетов являются прямоточный воздушно-реактивный или турбореактивный двигатель. В проектах крылатых ракет предпочтение традиционно отдавалось первому варианту.

Советские проекты

В СССР работами по созданию ядерного прямоточного воздушно-реактивного двигателя занималось ОКБ-670 под руководством Михаила Бондарюка. ЯПВРД был предназначен для модификации межконтинентальной крылатой ракеты «Буря» («изделие 375»), которую с 1954 года проектировало ОКБ-301 под руководством Семена Лавочкина. Стартовый вес ракеты достигал 95 т, дальность должна была составить 8 тыс. км. Однако в 1960 году через несколько месяцев после смерти Лавочкина проект «обычной» крылатой ракеты «Буря» был закрыт. Создание же ракеты с ЯПВРД так и не вышло за рамки предэскизного проектирования.

Впоследствии специалисты ОКБ-670 (переименованного в КБ «Красная Звезда») занялись созданием ядерных ракетных двигателей для космических и боевых баллистических ракет, однако ни один из проектов так и не дошел до стадии испытаний. После смерти Бондарюка работы над авиационными ядерными двигателями были фактически прекращены.

К ним вернулись лишь в 1978 году, когда при НИИ тепловых процессов было образовано конструкторское бюро из бывших специалистов «Красной Звезды», занимавшееся прямоточными воздушно-реактивными двигателями. Одной из их разработок стал ядерный прямоточный воздушно-реактивный двигатель для более компактной, по сравнению с «Бурей», крылатой ракеты (стартовой массой до 20 т). Как писали СМИ, «проведенные исследования показали принципиальную возможность реализации проекта». Однако о ее испытаниях не сообщалось.

Само КБ просуществовало под различными названиями (НПВО «Пламя», ОКБ «Пламя-М») до 2004 года, после чего закрыто.

Опыт США

С середины 1950-х годов ученые Радиационной лаборатории в Ливерморе (штат Калифорния) в рамках проекта Pluto разрабатывали ядерный прямоточный воздушно-реактивный двигатель для сверхзвуковой крылатой ракеты.

К началу 1960-х годов были созданы несколько прототипов ЯПВРД, первый из которых — Tory-IIA — был испытан в мае 1961 года. В 1964 году начались испытания новой модификации двигателя — Tory-IIC, который смог проработать пять минут, показав тепловую мощность около 500 МВт и тягу в 16 т.

Однако вскоре проект был закрыт. Традиционно считают, что причиной этого как в США, так и в СССР стало успешное создание межконтинентальных баллистических ракет, способных доставить ядерные боезаряды на территорию противника. В этой ситуации межконтинентальные крылатые ракеты не выдержали конкуренции.

Читать еще:  126 двигатель ваз рабочая температура

В России

1 марта 2018 года, выступая с посланием Федеральному собранию РФ, президент России Владимир Путин сообщил, что в конце 2017 года на Центральном полигоне Российской Федерации была успешно испытана новейшая крылатая ракета с ядерной энергоустановкой, дальность полета которой «является практически неограниченной». Ее разработка была начата после выхода США в декабре 2001 года из Договора об ограничении систем противоракетной обороны 1972 года. Название «Буревестник» ракета получила 22 марта 2018 года по итогам открытого голосования на сайте Минобороны.

Плазменный ракетный двигатель. Что заказал «Росатом»?

«Росатом» заказал испытания новейших моделей космических двигателей нового поколения. Их проведение запланирована на текущий год. Речь идет о лабораторных моделях так называемых ионного и холловского двигателей.

Новые двигатели должны обеспечить тягой автоматические, а также пилотируемые межпланетные космические корабли. В техническом задании отмечается, что для реализации данной задачи требуются силовые установки большой мощности. Испытания лабораторных моделей новых, так называемых ионного и холловского двигателей для космоса, как планируется, должны пройти в нынешнем году.

Как отмечается в техзаданиях, многие страны исследуют вопросы создания автоматических и пилотируемых межпланетных кораблей с использованием электрических ракетных двигательных установок (ЭРДУ) большой мощности (свыше 100 кВт). Сейчас появились практические разработки по ядерным реакторам космического базирования мегаваттного класса, которые могут обеспечить энергией такие двигатели.

Плазменный двигатель — разновидность электрического ракетного двигателя (ЭРД), расходуемое вещество которого получает ускорение в состоянии плазмы (ионизированного газа). В отличие от жидкостных двигателей, такие системы не предназначены для вывода грузов на орбиту, поскольку могут работать только в вакууме и сейчас используются, например, для удержания спутников на так называемой точке стояния. Кроме того, за счет уменьшения запасов рабочего тела при сравнительно высокой скорости его истечения, они рассматриваются как возможный способ совершения быстрых космических перелетов.

Ионный и холловский двигатели дают возможность разогнать космический аппарат в невесомости до скоростей, недоступных химическим двигателям. Двигатель на эффекте Холла — разновидность электростатического ракетного двигателя, в котором используется эффект Холла. При равных размерах с другим типом электростатического ракетного двигателя — ионным, холловский двигатель обладает большей тягой.

Ионный двигатель работает, используя в качестве рабочего тела, как правило, ионизированный инертный газ (аргон, ксенон), иногда и ртуть. Газ подается в ионизирующую камеру двигателя, где нейтральные молекулы становятся положительно заряженными ионами, которые ускоряются в электростатическом поле. Если в ионном двигателе ускоряются только положительные ионы, то в холловском двигателе задействовано все рабочее тело (то есть еще и отрицательные электроны). Поэтому холловский двигатель дает более высокую плотность тяги и, соответственно, большее ускорение.

Как отмечается в техзаданиях, у ионных и холловских двигателей сейчас наивысший уровень технической готовности и подтвержденные ресурсные характеристики в десятки тысяч часов (как при наземной отработке, так и при летной эксплуатации), однако у них есть недостатки. Основной из них ограничение по мощности единичного двигателя, снятие которого требует принципиально иных подходов к организации рабочих процессов в двигателях и соответствующих научных исследований. Отмечается, что на данный момент известны результаты испытаний ионного двигателя мощностью 35 кВт со скоростью истечения 70 км/с и КПД 75%.

Согласно техническим заданиям, до конца нынешнего года предстоит разработать, изготовить и провести испытания лабораторных моделей ионного двигателя мощностью до 20 кВт и холловского двигателя мощностью до 15 кВт. Цель работ — проверка основных технических решений с целью обеспечения создания прототипов плазменных ракетных двигателей с повышенными параметрами тяги и удельного импульса.

Государственный научный центр «Троицкий институт инновационных и термоядерных исследований» входит в научный дивизион «Росатома». Выполняет исследования в области управляемого термоядерного синтеза, физики плазмы, лазерной физики и техники. Уникальная экспериментально-стендовая база ТРИНИТИ позволяет получать результаты, имеющие важное научное и прикладное значение.

Ионный, холловский и магнитоплазмодинамический — три типа плазменных двигателей, уже нашедших практическое применение. За последние десятилетия исследователями предложено много перспективных вариантов. Разрабатываются двигатели, работающие в импульсном и в непрерывном режиме. В одних плазма создается с помощью электрического разряда между электродами, в других — индуктивным способом с помощью катушки или антенны. Различаются и механизмы ускорения плазмы: с использованием силы Лоренца, путем введения плазмы в создаваемые магнитным способом токовые слои, или с помощью бегущей электромагнитной волны. В одном из типов даже предполагается выбрасывать плазму через невидимые «ракетные сопла», создаваемые с помощью магнитных полей.

Во всех случаях плазменные ракетные двигатели набирают скорость медленнее обычных. Тем не менее благодаря парадоксу «чем медленнее, тем быстрее» они позволяют достичь далеких целей в более короткий срок, так как в итоге разгоняют космический аппарат до скорости значительно большей, чем двигатели на химическом топливе при той же массе топлива. Это позволяет избежать траты времени на отклонения к телам, обеспечивающим эффект гравитационной рогатки.

Атомный ракетный двигатель принцип работы

Василий Ковалев, Санкт-Петербург

Говорят, на грани веков русскими овладевает безумная страсть к разрушению. Охваченные жаждой перемен, русские своими руками дробят свою страну, на несколько десятилетий отбрасывая назад экономику. Куда сегодня движется страна? На этот вопрос нет ответа. Постреволюционной России было отмерено всего 70 лет — это исторический миг, сравнимый с жизнью человека. Для сравнения: династия Романовых правила страной три века, а цивилизация Древнего Египта существовала 40 веков!

В.Н. Комлев, инженер-физик, пенсионер, Апатиты

Цель моих публикаций – инициировать плодотворное обсуждение ситуации вокруг чрезвычайно важного объекта — федерального пункта глубинного захоронения радиоактивных отходов (ПГЗРО). Этому могла бы поспособствовать направленная в уважаемый геологический журнал (для рубрики «Гипотезы, сообщения, дискуссии») статья. С публикацией не сложилось, бывает.

Читать еще:  Выдавливает антифриз двигатель холодный

Что можно сделать с радиоактивными отходами ядерной энергетики

Август объявлен месяцем экологии. Одной из наиболее сложных экологических проблем считается обращение с радиоактивными материалами. Институт физической химии и электрохимии РАН (ИФХЭ РАН) с самого начала существования атомной отрасли в СССР — в прошлом году ей исполнилось 75 лет — вел исследования, связанные с делящимися материалами.

Бурное развитие возобновляемых источников энергии отодвинуло на задний план внимание к проектам создания термоядерного реактора. Но безуглеродный термояд по-прежнему находит финансирование. Продолжается строительство знакового для термоядерной энергетики международного демонстрационного термоядерного реактора ИТЭР во Франции. Федеральное правительство США выделило 4,7 миллиарда долларов на развитие новой технологии и связанные с ней научные разработки.

Концерн «Росэнергоатом» (входит в «Росатом») застрахует от катастрофических рисков все атомные станции России на два года, сумма страховки составит 2,044 трлн руб. Согласно протоколу на сайте госзакупок, победителем торгов стала компания «Согаз». Она получит страховую премию в размере 3,3 млрд руб.

Г.Ю. Никольский

Физики расходятся в интерпретациях квантовой механики и в мнениях о корпускулярно-волновом дуализме. Характерные названия физических моделей: абсолютно чёрные тела, черные дыры и темная материя говорят об отсутствии ясного представления оприроде материальных объектов. Наука отметает духовное начало и превосходит религию, представляя сотворение мира, как большой взрыв, взяв за основу гипотезу веселого физика.

«Закрываемую Игналинскую атомную электростанцию ожидает самый большой вызов в истории электростанции – демонтаж ядерных реакторов типа РМБК. Физические демонтажные работы активной зоны реактора (R3), которые начнутся в 2027 году, являются уникальным проектом, не имеющим аналогов в мире. Демонтаж двух самых мощных в мире реакторов типа РБМК – первый в мировой практике проект по снятию с эксплуатации такой атомной электростанции».

Б.И.Нигматулин, д.т.н., профессор

24 сентября 1941 лондонское радио сообщило о ноте правительства Англии правительству Финляндии, в которой говорилось о недопустимости для финской армии продвижения за границу 1939 г. на территорию Советского Союза.

Президент России Владимир Путин дал понять, что он определенно хочет, чтобы на финской земле была построена атомная электростанция российского дизайна и частично находящаяся в собственности России. Первоначально предполагалось, что атомная электростанция «Фенновойма» будет производить электроэнергию в 2020 году. Теперь совместное финско-российское предприятие поставило цель запустить ядерный реактор в 2028 году.

Необходимые меры

VII. ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРИРОДНОЙ РЕНТЫ

Необходимо оптимизировать эксплуатацию природных ресурсов, на ко­торых в значительной степени держится экономика России. Для их сохране­ния будущим поколениям следует принять следующие меры.

Ушёл из жизни Геннадий Петрович Хандорин. «Сибирский славный Хан», как пелось в одной самодеятельной песне, рождённой в Северске.

Д.Л. Подушков, депутат Удомельской городской Думы, фракция КПРФ

Кандидаты в различные органы власти от «Единой России» продолжают злоупотреблять, по моему мнению, административным, информационными и бюджетными ресурсами, нарушают принципы «честных выборов», что В ОЧЕРЕДНОЙ РАЗ обещают россиянам и «гарант Конституции РФ» Президент РФ В.В.Путин, и лидеры партии. ЛИБО соответствующие надзорные органы саботируют указания Президента!

Институт проблем естественных монополий (ИПЕМ) проанализировал итоги работы российской промышленности в июле 2021 года. По оценкам института, в июле продолжается значительный рост производства и спроса на промышленную продукцию, при этом темпы прироста постепенно замедляются. Основными локомотивами роста снова становятся отрасли ТЭК.

Ядерное топливо третьего поколения для ВВЭР-440

На энергоблоке № 4 Кольской АЭС успешно завершился пятый цикл облучения российского ядерного топлива поколения РК-3 для реакторов ВВЭР-440. Телевизионный осмотр облученного топлива с помощью специализированного оборудования показал, что после пяти циклов облучения все сборки РК-3 сохраняют свою изначальную геометрию, и все тепловыделяющие элементы — герметичны: «повреждений и формоизменений элементов рабочих кассет не выявлено».

Необходимые меры

Концепция подготовлена рабочей группой с учетом решений Форума, про веденного в мае 2019 г. Российской академией наук совместно с Вольным эко номическим обществом. Руководили работой академик РАН Р.И.Нигматулин, д.т.н. Б.И.Нигматулин. В рабочей группе работали академики РАН А.Г.Аганбегян, В.И.Осипов, Г.А.Папцов, А.В.Петриков, И.Г.Ушачев, П.А.Чекмарев, члены-кореспонденты РАН А.Р.Бахтизин, В.А.Цветков, д.э.н. Е.Б.Ленчук, д.э.н. В.В.Локосов, д.э.н. С.В.Чернявский, к.ф.-м.н. К.Х.Зоидов, к.э.н. Е.В.Моргунов, к.г.н. Ю.А.Симагин, а также сотрудники неакадемических учреждений: к.т.н. М.Д.Абрамов, д.э.н. В.А.Кашин, д.э.н. В.М.Симчера.

Е.П.Велихов, д.ф.-м.н, профессор, академик РАН; В.Д.Давиденко, д.т.н; В.Ф.Цибульский, д.т.н. НИЦ «Курчатовский институт»

В статье рассматривается вопрос развития ядерной энергетической системы в текущем столетии. Значимость этого вопроса как для перспективы, так и для выбора способов решения текущих энергетических задач высока, что в большой степени обусловлено нарастающими ограничениями экологического характера.

В.Путин: Алексей Евгеньевич, компания «Росатом» относится к числу наиболее крупных компаний России, многопрофильных, в неё входят 350 организаций и 300 тысяч работающих. Как Вы оцениваете ситуацию в компании?

В.Н. Комлев, инженер-физик, пенсионер, Апатиты

Настоящая статья, как оценочное профессиональное суждение автора для попытки понимания долговременного будущего, посвящена анализу опубликованной в открытых источниках информации по теме захоронения особо опасных радиоактивных отходов (РАО) в России. Хоронить РАО, безусловно, нужно. Но где и как?

Владимир Долгих, ветеран атомной энергетики и промышленности, журналист

Было время, когда в обществе сформировалось мнение, что для депутата как муниципального, так и федерального уровня, необходим диплом юриста или экономиста. А лучше оба сразу! Если, конечно, он намерен быть парламентарием полноценным. Но познакомившись с ответом за подписью исполняющей обязанности прокурора Северска госпожи Блинниковой, направленным в адрес депутата тамошней думы Владимира Петрова, понимаешь – двух будет маловато. Нужен ещё один – филолога.

Часть 1

Андрей Виноградов, к.т.н., гл. конструктор проектов

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector