Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ядерный ракетный двигатель

Ядерный ракетный двигатель

Ядерный ракетный двигатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги.

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма).

В СССР развёрнутое постановление правительства по проблеме создания ЯРД было подписано в 1958 году. Этим документом руководство работами в целом было возложено на академиков М. В. Келдыша, И. В. Курчатова и С. П. Королёва. К работам были подключены десятки исследовательских, проектных, конструкторских, строительных и монтажных организаций. ЯРД активно разрабатывались КБХА в Воронеже и испытывались в СССР (см. РД-0410) и США (см. NERVA) с середины 1950-х годов. Исследования ведутся и в 2018 году.

Твердофазный ядерный ракетный двигатель

В твердофазных ЯРД (ТфЯРД) делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура нагрева ограничена температурой плавления элементов конструкции (не более 3000 К). Удельный импульс твердофазного ЯРД, по современным оценкам, составит 850—900 с, что более чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей. Наземные демонстраторы технологий ТфЯРД в ХХ веке были созданы и успешно испытаны на стендах (программа NERVA в США, РД-0410 в СССР).

Жидкофазные и коллоидные ядерный ракетный двигатель

Работы по жидкофазным и коллоидным ЯРД не получили большого развития, так как эти ЯРД по своей эффективности сравнительно мало превосходят твердофазные, а по технической сложности сравнимы с газофазными (проблемы организации запуска, регулирования и выключения для жидкофазных и коллоидных ЯРД являются столь же сложными).

Газофазный ядерный ракетный двигатель

Газофазный ядерный реактивный двигатель (ГЯРД) — концептуальный тип реактивного двигателя, в котором реактивная сила создаётся за счёт выброса теплоносителя (рабочего тела) из ядерного реактора, топливо в котором находится в газообразной форме или в виде плазмы. Считается, что в подобных двигателях удельный импульс составит 30—50 тыс. м/с. Перенос тепла от топлива к теплоносителю достигается в основном за счёт излучения, большей частью в ультрафиолетовой области спектра (при температурах топлива около 25 000 °C).

Ядерный импульсный двигатель

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлёте корабль должен лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

По проекту «Орион» проводились не только расчёты, но и натурные испытания. Лётные испытания моделей летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем. Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок. Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы были размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповреждёнными, тонкий слой графита испарился (аблировал) с их поверхностей.

Программа развития проекта «Орион» была рассчитана на 12 лет, расчётная стоимость — 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollo»). Интересно, что разработчики проводили предварительные расчёты постройки на базе этой технологии корабля поколений с массой до 40 млн тонн и экипажем до 20 000 человек. Согласно их расчётам один из уменьшенных вариантов такого ядерно-импульсного звездолёта (массой 100 тыс. т) мог бы достичь Альфы Центавра за 130 лет, разогнавшись до скорости 10 000 км/с. Однако приоритеты изменились, и в 1965 году проект был закрыт.

В СССР аналогичный проект разрабатывался в 1950—70-х годах. Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30—40 км от поверхности Земли; затем предполагалось включать основной ядерно-импульсный двигатель. Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершён. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Другие разработки

В 1960-х годах США были на пути к Луне. Менее известным является тот факт, что в Зоне 25 (рядом со знаменитой Зоной 51) на полигоне Невады учёные работали над одним амбициозным проектом — полётом на Марс на ядерных двигателях. Проект был назван NERVA. Работая на полную мощность, ядерный двигатель должен был нагреваться до температуры в 2000 °C. В январе 1965 года были произведены испытания ядерного ракетного двигателя под кодовым названием «КИВИ» (KIWI).

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе.

В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю.

Ядерная электродвигательная установка

Ядерная электродвигательная установка (ЯЭДУ) используется для выработки электроэнергии, которая, в свою очередь, используется для работы электрического ракетного двигателя.

Подобная программа в США (проект NERVA) была свёрнута в 1971 году, но в 2020 году американцы вновь вернулись к данной теме, заказав разработку ядерного теплового двигателя (Nuclear Thermal Propulsion, NTP) компании Gryphon Technologies, для военных космических рейдеров на атомных двигателях для патрулирования окололунного и околоземного пространства, также с 2015 г. идут работы по проекту Kilopower.

Читать еще:  Что такое двигатель в12

С 2010 года в России начались работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем (космический буксир «Нуклон»). На 2021 г. ведется отработка макета; к 2025 году планируется создать опытные образцы данной ядерной энергоустановки; заявлена плановая дата лётных испытаний космического тягача с ЯЭДУ — 2030 год.

В 2021 г. Космическое агентство Великобритании заключило соглашение с компанией Rolls-Royce, в рамках которого планируется создать ядерный силовой двигатель для космических аппаратов дальнего действия.

Перспективы

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года.

Плюсы и минусы: как летает ракета с ядерным реактором

В одном из разделов «Живого Журнала» инженер — электронщик постоянно пишет про ядерные и термоядерные машины — реакторы, установки, исследовательские лаборатории, ускорители, а так же про радиацию. Новая российская ракета, показания во время ежегодного послания Президента, вызвала живейший интерес блогера. И вот что он нашел по этой теме.

Да,исторически разработки крылатых ракет с прямоточным ядерным воздушным двигателем были: это ракета SLAM в США с реактором TORY-II, концепт Avro Z-59 в Великобритании, проработки в СССР.

Современный рендер концепта ракеты Avro Z-59, массой около 20 тонн.

Однако все эти работы шли в 60-х как НИОКР разной степени глубины (дальше всех зашли США, о чем ниже) и продолжения в виде образцов на вооружении не получили. Не получили по той же причине, что и многие другие проработки Atom Age — самолеты, поезда, ракеты с ЯЭУ. Все эти варианты транспортных средств при некоторых плюсах, которые дает бешенная плотность энергии в ядерном топливе, имеют очень серьезные минусы — дороговизна, сложность эксплуатации, требования постоянной охраны, наконец неудовлетворительные результаты разработок, про которые обычно что мало известно (публикуя результаты НИОКР всем сторонам выгоднее выставлять достижения и скрывать неудачи).

В частности, для крылатых ракет гораздо проще создать носитель (подводную лодку или самолет), который «подтащит» множество КР к месту пуска, чем морочиться с небольшим парком (а большой парк освоить невероятно сложно) крылатых ракет, запускаемых со своей территории. Универсальное, дешевое, массовое средство победило в итоге малосерийное, дорогое и с неоднозначными плюсами. Атомные крылатые ракеты не пошли дальше наземных испытаний.

Этот концептуальный тупик 60-х годов КР с ЯЭУ, на мой взгляд, актуален и сейчас, поэтому основной вопрос к показанному «зачем??». Но еще более выпуклым его делают проблемы, которые возникают при разработке, испытаниях и эксплуатации подобного оружия, о чем говорим дальше.

Итак, начнем с реактора. Концепты SLAM и Z-59 были трехмаховым низколетящими ракетами внушительных габаритов и массы (20+ тонн после сброса стартовых ускорителей). Страшно затратный низколетящий сверхзвук позволял по максимуму использовать наличие практически не ограниченного источника энергии на борту, кроме того, важной чертой ядерного воздушного реактивного двигателя является улучшения кпд работы (термодинамического цикла) при росте скорости, т.е. та же идея, но на скоростях в 1000 км/ч имела бы гораздо более тяжелый и габаритный двигатель. Наконец, 3М на высоте в сотню метров в 1965 году означало неуязвимость для ПВО.Получается, что раньше концепция КР с ЯЭУ «завязывалась» на высокой скорости, где преимущества концепции были сильными, а конкуренты с углеводородным топливом ослабевали.Показанная же ракета, на мой взгляд, околозвуковая или слабосверхзвуковая (если, конечно, верить, что на видео именно она). Но при этом габарит реактора уменьшился значительно по сравнению с TORY-II от ракеты SLAM, где он составлял аж 2 метра включая радиальный отражатель нейтронов из графита

Активная зона первого тестового реактора TORY-II-A во время сборки.

Можно ли вообще уложить реактор в диаметр 0,4-0,6 метра?

Начнем с принципиально минимального реактора — болванки из Pu239. Хороший пример реализации такой концепции — космический реактор Kilopower, где, правда, используется U235. Диаметр активной зоны реактора всего 11 сантиметров! Если перейти на плутоний 239 размеры АЗ упадут еще в 1,5-2 раза.Теперь от минимального размера мы начнем шагать к реальном ядерному воздушному реактивному двигателю, вспоминая про сложности.

Самым первым к размеру реактора добавляется размер отражателя — в частности в Kilopower BeO утраивает размеры. Во-вторых мы не можем использовать болванку U или Pu — они элементарно сгорят в потоке воздуха буквально через минуту. Нужна оболочка, например из инкалоя, который противостоит мгновенному окислению до 1000 С, или других никелевых сплавов с возможным покрытием керамикой. Внесение большого количества материала оболочек в АЗ сразу в несколько раз увеличивает необходимое количество ядерного топлива — ведь «непродуктивное» поглощение нейтронов в АЗ теперь резко выросло!

Атомный ракетный двигатель

Я́дерный раке́тный дви́гатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги.

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма).

В СССР развёрнутое постановление правительства по проблеме создания ЯРД было подписано в 1958 году. Этим документом руководство работами в целом было возложено на академиков М. В. Келдыша, И. В. Курчатова и С. П. Королёва [2] [3] . К работам были подключены десятки исследовательских, проектных, конструкторских, строительных и монтажных организаций. ЯРД активно разрабатывались КБХА в Воронеже и испытывались в СССР (см. РД-0410) и США (см. NERVA) с середины 1950-х годов. Исследования продолжаются и в 21-м веке [4] .

Содержание

  • 1 Твердофазный ядерный ракетный двигатель
  • 2 Жидкофазные и коллоидные ядерный ракетный двигатель
  • 3 Газофазный ядерный ракетный двигатель
  • 4 Ядерный импульсный двигатель
  • 5 Другие разработки
  • 6 Ядерная электродвигательная установка
  • 7 Перспективы
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Твердофазный ядерный ракетный двигатель

В твердофазных ЯРД (ТфЯРД) делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура нагрева ограничена температурой плавления элементов конструкции (не более 3000 К). Удельный импульс твердофазного ЯРД, по современным оценкам, составит 850—900 с, что более чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей [5] . Наземные демонстраторы технологий ТфЯРД в ХХ веке были созданы и успешно испытаны на стендах (программа NERVA в США, РД-0410 в СССР).

Читать еще:  Двигатель 405 заглох причина

Жидкофазные и коллоидные ядерный ракетный двигатель

Работы по жидкофазным и коллоидным ЯРД не получили большого развития, так как эти ЯРД по своей эффективности сравнительно мало превосходят твердофазные, а по технической сложности сравнимы с газофазными (проблемы организации запуска, регулирования и выключения для жидкофазных и коллоидных ЯРД являются столь же сложными).

Газофазный ядерный ракетный двигатель

Газофазный ядерный реактивный двигатель (ГЯРД) — концептуальный тип реактивного двигателя, в котором реактивная сила создаётся за счёт выброса теплоносителя (рабочего тела) из ядерного реактора, топливо в котором находится в газообразной форме или в виде плазмы. Считается, что в подобных двигателях удельный импульс составит 30—50 тыс. м/с. Перенос тепла от топлива к теплоносителю достигается в основном за счёт излучения, большей частью в ультрафиолетовой области спектра (при температурах топлива около 25 000 °C).

Ядерный импульсный двигатель

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлёте корабль должен лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

По проекту «Орион» проводились не только расчёты, но и натурные испытания. Лётные испытания моделей летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем. Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок. Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы были размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповреждёнными, тонкий слой графита испарился (аблировал) с их поверхностей.

Программа развития проекта «Орион» была рассчитана на 12 лет, расчётная стоимость — 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollo»). Интересно, что разработчики проводили предварительные расчёты постройки на базе этой технологии корабля поколений с массой до 40 млн тонн и экипажем до 20 000 человек [6] . Согласно их расчётам один из уменьшенных вариантов такого ядерно-импульсного звездолёта (массой 100 тыс. т) мог бы достичь Альфы Центавра за 130 лет, разогнавшись до скорости 10 000 км/с. [7] [8] Однако приоритеты изменились, и в 1965 году проект был закрыт.

В СССР аналогичный проект разрабатывался в 1950—70-х годах [9] . Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30—40 км от поверхности Земли; затем предполагалось включать основной ядерно-импульсный двигатель. Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершён. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Другие разработки

В 1960-х годах США были на пути к Луне. Менее известным является тот факт, что в Зоне 25 (рядом со знаменитой Зоной 51) на полигоне Невады учёные работали над одним амбициозным проектом — полётом на Марс на ядерных двигателях. Проект был назван NERVA. Работая на полную мощность, ядерный двигатель должен был нагреваться до температуры в 2000 °C. В январе 1965 года были произведены испытания ядерного ракетного двигателя под кодовым названием «КИВИ» (KIWI).

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе [10] .

В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю [11] [12] [13] .

Ядерная электродвигательная установка

Ядерная электродвигательная установка (ЯЭДУ) используется для выработки электроэнергии, которая, в свою очередь, используется для работы электрического ракетного двигателя.

Подобная программа в США (проект NERVA) была свёрнута в 1971 году, но в 2020 году американцы вновь вернулись к данной теме, заказав разработку ядерного теплового двигателя (Nuclear Thermal Propulsion, NTP) компании Gryphon Technologies, для военных космических рейдеров на атомных двигателях для патрулирования окололунного и околоземного пространства [14] , также с 2015 года идут работы по проекту Kilopower.

С 2010 года в России начались работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем (космический буксир «Нуклон»). На 2021 год ведётся отработка макета; к 2025 году планируется создать опытные образцы данной ядерной энергоустановки; заявлена плановая дата лётных испытаний космического тягача с ЯЭДУ — 2030 год.

В 2021 году Космическое агентство Великобритании заключило соглашение с компанией Rolls-Royce, в рамках которого планируется создать ядерный силовой двигатель для космических аппаратов дальнего действия [15] .

Перспективы

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца [16] [17] и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года [18] .

О судьбе идеи ядерного ракетного двигателя для полётов в глубокий космос

США намерены превратить Луну и лунную орбиту в сферу своих военных интересов

Американское агентство оборонных исследований DARPA выделило в своём бюджете на 2021 год $158 млн. на космические программы и технологии, связанные с лунной программой, в том числе с созданием ракеты с ядерным двигателем для операций в глубоком космосе, а также между Землёй и Луной.

Заказчиком для создания ракеты с ядерным двигателем являются ВВС США. Это означает, что США собираются превратить Луну и лунную орбиту в сферу своих военных интересов. Американский военный портал Breaking Defense пишет о том, что эта программа является прикрытием военных амбиций Пентагона. Основой для работы двигателя DRACO-21 должен стать низкообогащённый уран-235 (от 5 до 20 процентов).

Читать еще:  Z22se как снять двигатель

Разработки космической ракеты на ядерном двигателе США велись ещё в 1960-х годах в так называемой Зоне 25 (рядом со знаменитой Зоной 51) на полигоне в пустыне Невада. В 1961 году NASA совместно с Комиссией по атомной энергии разработало идею применения ядерных ракетных двигателей (ЯРД) для полётов в космос. Бывший конструктор гитлеровских ракет ФАУ Вернер фон Браун, ставший отцом американской космонавтики, рассчитывал, что благодаря ядерным двигателям первые пилотируемые миссии на Марс состоятся уже в 1980-х годах. Проект создания ЯРД для космических аппаратов был назван NERVA (Nuclear Engine for Rocket Vehicle Application).

Советский и американский ЯРД

Почти все исследования по проекту NERVA проводились в Лос-Аламосской лаборатории. NASA планировало использовать ракету с ядерным двигателем для полёта к Марсу в 1978 году и к постоянной лунной базе в 1981 году. Ракеты с NERVA также предполагалось использовать как «буксиры» для снабжения нескольких космических станций на орбитах вокруг Земли и Луны. Эта ракета стала бы также атомной верхней ступенью ракеты «Сатурн», что позволило бы выводить на низкую околоземную орбиту до 154 тонн полезной нагрузки.

В ходе испытаний общее время работы ядерного двигателя составило 115 минут, было проведено 28 пусков. NASA заявило, что «ядерный двигатель подходит для применения космической техники и в состоянии работать с удельным импульсом в два раза большим, чем химическая система». Двигатель считался пригодным для полёта на Луну и на Марс.

Однако в конце 1960-х Америка погрузилась в глубокий политический кризис, и исследования глубокого космоса были отложены в долгий ящик. Администрация Ричарда Никсона сначала сократила, а затем прекратила финансирование работ по космической ракете с ядерным двигателем. Вместо ракет с ЯРД в США начали программу создания космических челноков.

Ограниченные возможности ракетных двигателей на химическом топливе стали ясны ещё в 1950-х годов, до начала первых космических полётов. Для дальнего космоса эти двигатели были малопригодны. Уже тогда были проведены исследования, которые показали, что космический аппарат с ядерным двигателем может добраться до Марса чуть более чем за месяц, до далекого Плутона всего за два месяца, до звезды Альфа Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года. То есть ЯРД сделал бы возможным пилотируемые полёты к звездам, а полёты к планетам Солнечной системы стали бы обыденными.

Впервые идея использования ракет с ядерными двигателями была выдвинута в Советском Союзе. В 1955 году академик Мстислав Келдыш выступил с инициативой создания ракетного двигателя особой конструкции, в которой источником энергии выступал бы ядерный реактор. Проработку идеи поручили НИИ-1 Минавиапрома, а руководителем работ стал талантливый конструктор Виталий Иевлев. В кратчайшие сроки советские учёные предложили несколько вариантов перспективного ЯРД. В 1958 году постановлением Совмина СССР ответственными за разработку ЯРД были назначены М.В. Келдыш, И.В. Курчатов и С.П. Королёв. К работам были привлечены несколько десятков научных и проектных организаций. Планировалось участие и министерства обороны.

М. Келдыш, В. Иевлев, А. Александров, И. Курчатов

В августе 1978 года на Семипалатинском полигоне были проведены успешные испытания ЯРД. В их ходе реактор постепенно выводился на мощность 24, 33 и 42 МВт. В начале восьмидесятых годов состоялись испытания двух более мощных ЯРД. Они показывали мощность до 62-63 МВт.

Однако в середине 1980-х годов основные работы по тематике советского ЯРД были прекращены. Промышленность уже тогда могла начать разработку разгонного блока или иной ракетно-космической техники под ЯРД, получивший название РД0410, но началась горбачёвская «перестройка», поставившая крест на советской программе освоения дальнего космоса. К 1988 году все работы по теме космических ЯРД были свёрнуты.

К тому времени Конструкторское бюро химавтоматики в Воронеже уже успело изготовить полноценный двигатель РД0410, пригодный для установки на будущий разгонный блок космической ракеты-носителя. Однако этот перспективный ядерный двигатель остался невостребованным.

Современные технологические достижения дают возможность использовать обедненный уран, что гораздо безопасней.

С 2010 года в России начались работы над проектом «ядерной электродвигательной установки» (ЯЭДУ) мегаваттного класса для космических транспортных систем. Разработку вел московский Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля (НИКИЭТ). На начало 2016 года было завершено эскизное проектирование, создана проектная документация, завершены испытания системы управления реактором, проведены испытания ТВЭЛ, корпуса реактора, полномасштабных макетов радиационной защиты реакторной установки, но эти достижения оказались напрасными. В сентябре 2015 года Роскосмос решил не тратиться на создание космических аппаратов с ядерной электродвигательной установкой. Запланированная опытно-конструкторская работа «Разработка и наземные испытания ключевых элементов и технологий ядерных энергодвигательных установок для межорбитального буксира и межпланетных космических аппаратов» (ОКР «ЯЭДУ») была вычеркнута из проекта Федеральной космической программы на 2016–2025 годы (ФКП-2025).

А ведь уже к 2017 году НИКИЭТ планировал построить реактор для будущего ядерного двигателя. Головной организацией по созданию самой энергодвигательной установки был ФГУП «Центр Келдыша». А транспортный модуль должна была строить РКК «Энергия».

Причина свёртывания программ исследования дальнего космоса, невозможных без создания ракет на ЯРД, известна. В 2015 году во главе Роскосмоса был поставлен «эффективный менеджер» Игорь Комаров, не имевший профильного образования. Через четыре года его сменил журналист Дмитрий Рогозин… Время было потеряно, и уже вскоре компания «рекламщика и пускателя пыли в глаза» Илона Маска добилась более дешёвой (в сравнении с российскими ракетами) цены вывода на орбиту полезного груза, а SpaceX сделала больше гражданских пусков, чем Роскосмос.

Работы по созданию ЯРД всё же возобновлены, однако отставание от американцев не сократилось. В 2020 году Роскосмос планирует испытать лишь макет космического ядерного двигателя. Буксуют программы создания новых ракет-носителей, которые должны быть первыми ступенями космических кораблей, отправляющихся в глубокий космос.

Сейчас к разработке ядерных двигателей для космических полётов приступил Китай. В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation) опубликовала программу развития космической программы КНР на 2017-2045 годы, предусматривающую создание многоразового корабля, работающего на ядерном ракетном двигателе.

Так что с «эффективными менеджерами» Россия может отстать в стратегических программах военного космоса не только от Америки, но и от Китая.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector