Sw-motors.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Однофазные электродвигатели 220В: принцип работы и области применения

Однофазные электродвигатели 220В: принцип работы и области применения

Двигатель является железным сердцем огромного количества электрических приборов. Существует большое разнообразие его видов. Однофазные электродвигатели 220В сегодня пользуются большой популярностью. Они встречаются в самых разных бытовых и промышленных видах оборудования.

Двигатель этой разновидности отличается простотой применения. Его достаточно лишь подключить в бытовую розетку, дабы привести технику в рабочее состояние. Представленные моторы имеют ряд особенностей. Схемы их подключения, а также область применения следует рассмотреть подробнее.

Область применения

Практически все однофазные двигатели, используемые сегодня, относятся к классу асинхронных устройств. Их применяют в огромном количестве технических устройств.

Электродвигатели однофазные 220В с регулировкой оборотов нашли свое применение в разных производственных процессах. Они приводят в движение механизмы станков (например, для деревообработки), компрессорные и насосные установки. Также их широко используют в устройствах промышленной вентиляции, транспортерах, подъемниках и прочих видах оборудования.

Для средств малой механизации также применяются однофазные двигатели. Например, это могут быть бетономешалки, экструдеры, кормоизмельчители и т. д. Различные бытовые приборы также могут комплектоваться подобными видами моторов.

Виды моторов

Однофазные электродвигатели 220В в зависимости от своих особенностей конструкции и области применения подразделяются на несколько групп. В первую очередь различают устройства, защищенные от взрывов и общепромышленного назначения. Их устанавливают внутри или снаружи помещений. Допускается их использование в среде, содержащей разного рода примеси. Они могут становиться взрывоопасными при контакте с кислородом.

Также различают оборудование постоянного или переменного тока. Его подключают к аккумуляторам или к источникам постоянного тока. По частоте вращения ротора различают асинхронные и синхронные двигатели. Первая категория устройств применяется гораздо чаще.

Также бывают короткозамкнутые и фазные устройства. Первую категорию применяют, когда нет потребности выполнять большой момент пуска.

Составные элементы

Чтобы понять, как подключить однофазный электродвигатель в сеть (220В) , а также использовать его в различных целях, следует понимать его состав. Мотор этого типа имеет корпус, центробежный пускатель, статор двигателя. У него также есть ротор, вал и обмотка. В конструкции предусмотрены подшипниковые щиты, узлы.

Для подсоединения проводов электропитания в системе предусмотрена клеммная коробка. Также есть лапы. Каждый из обязательных конструкционных элементов выполняет определенные функции. Если происходит поломка хотя бы в одном из компонентов мотора, оборудование начинает работать неправильно или останавливается вовсе.

Персонал предприятия должен знать, как быстро устранить неисправности, чтобы цикл не приостановился. Поэтому сотрудникам проводят специальные обучения по технике выполнения ремонта электродвигателей.

Особенности

Однофазные электродвигатели 220В, схемы подключения которых будут рассмотрены далее, имеют ряд отличительных от других разновидностей оборудования особенностей. Они оснащены специальным устройством. На их статоре есть однофазная обмотка. Она занимает две из пяти точек абсолютно каждого полюса двигателя.

Короткозамкнутым путем чаще всего приводится в движение ротор. Есть два встроенных редуктора. Это червячный и цилиндрический тип узлов. Статорная обмотка подключается к источнику электроэнергии. При этом создается магнитное поле. Трансформатор индуцирует ток в роторных проводах. Ось его будет не совпадать со статором.

Чем проще конструкция оборудования, тем долговечнее его срок эксплуатации. Поэтому стоит отдавать предпочтение моторам с представленными конструктивными особенностями.

Конструкционные модификации

Существует множество вариантов конструкционного исполнения, которым наделены электродвигатели однофазные 220В малой мощности . Согласно условиям окружающей среды, они могут иметь стойкость к химическим веществам, высоким или низким температурам, а также применяться в условиях сельского хозяйства (обладать повышенными экологическими характеристиками).

Точность установленного размера также разнится у однофазных двигателей. При необходимости можно найти устройства высокой и повышенной точности. Также оборудование может иметь дополнительные элементы, например, встроенные тормоза или фазный ротор.

Двигатель может работать на нескольких скоростях, которые задает пользователь. В нем может быть усилен пусковой момент. Конструкция также бывает устойчивой к скольжению. Для узкой специализации разрабатываются особые конструкции моторов.

Преимущества и недостатки

Электродвигатели однофазные 220В с редуктором имеют массу преимуществ перед другими разновидностями моторов. В первую очередь это относится к энергопотреблению представленного оборудования. Однофазные двигатели расходуют малое количество энергоресурсов. Это становится возможно благодаря высокому уровню КПД.

Эти устройства универсальны. Их можно применять в различных производственных линиях и бытовых приборах. Технология их изготовления оговорена ГОСТом и ТУ. Поэтому качество подобных изделий достаточно высокое.

Представленные устройства имеют продолжительный срок эксплуатации, а также высокий уровень устойчивости к большим нагрузкам. Они обладают низким уровнем шума и вибрации.

Из недостатков следует выделить большие габариты подобных двигателей. Однако это не мешает применять их в различных отраслях народного хозяйства и в бытовых целях.

Типы подключения

Существует несколько способов подключения представленного оборудования к сети. Например, электродвигатели однофазные 220В малой мощности с редуктором можно включить непосредственно в розетку при помощи шнура с вилкой. Однако для мощных устройств с высоким уровнем КПД этот вариант не подходит.

Асинхронные двигатели не работают напрямую от сети 220В. Поэтому нужно дорабатывать конструкцию. В этом случае существует два общепринятых способа. В первом случае на статор добавляется дополнительная обмотка под углом 90º относительно той, к которой подходит фаза. Схема представлена далее:

  • I — Статор мотора.
  • II — Два типа обмотки.
  • III — Конденсатор.

Во втором варианте для сдвига фазы в цепь дополнительной обмотки подключается особый элемент. Чаще всего для этих целей применяется конденсатор. С конструкционной точки зрения такой двигатель относится к классу двухфазных. Однако рабочей в этом случае будет только одна обмотка. Поэтому практически это однофазный двигатель.

Схема с пусковым конденсатором

Для смещения фазы в схему подключения добавляются различные электромеханические детали. К ним относятся активный резистор, катушка индуктивности и т. д. Однако их применяют достаточно редко. Гораздо чаще создаются схемы подключения, в которых применяются однофазные электродвигатели 220В с конденсатором. Этот элемент способен обеспечить лучший пусковой эффект. Различают рабочий, пусковой и комбинированный конденсатор. Схема второго варианта представлена далее:

  • I — Ротор.
  • II — Пусковой конденсатор.
  • III — Обмотка.

Чаще всего применяется схема со вторым типом электромеханических деталей. В этом случае она выступает в качестве пускателя, позволяя двигателю работать лишь во время включения. Последующее движение ротора обеспечивает пульсирующее магнитное поле. В такой схеме применяется реле или кнопка.

Читать еще:  Высокие обороты двигателя каменс

Обмотка пусковой фазы не рассчитана на длительные и большие нагрузки. Она задействована только в пусковой фазе. Поэтому для нее применяется тонкая проволока. Чтобы конструкция не вышла из строя, в нее включается такой элемент, как термореле или центробежный выключатель.

Схема с рабочим конденсатором

Электродвигатели однофазные 220В, схема подключения которых была представлена выше, могут обладать рабочим типом конденсатора. В этом случае снижаются потери при преобразовании электрической энергии в механическую. КПД подобных устройств выше, чем у предыдущей схемы.

Однако подобная конструкция не предусматривает выключение дополнительной обмотки при разгоне мотора. Рабочий конденсатор в этой схеме компенсирует энергопотери. Это обеспечивает высокий уровень КПД. Пусковые характеристики же будут лучше в предыдущей схеме (с пусковым конденсатором).

Дополнительные элементы схемы необходимо подбирать в соответствии с показателями тока нагрузки. Если конденсатор будет неподходящим по своим емкостным характеристикам, вращающееся магнитное поле примет эллиптическую форму, КПД снизится.

Схема с рабочим и пусковым конденсатором

Подключая однофазные электродвигатели 220В в сеть, можно использовать оба типа конденсаторов одновременно. Представленные выше схемы не лишены своих недостатков. При использовании пускового и рабочего дополнительного электромагнитного элемента одновременно, можно создать новый тип подключения.

В этом случае схема будет иметь среднее между двумя приведенными выше системами значение. Для оборудования, нуждающегося в создании сильного пускового момента, нужно применять пусковой конденсатор. Если же этого не требуется, можно применять вторую схему подключения.

Конденсатор

Чтобы правильно подключить однофазные электродвигатели 220В , нужно правильно подобрать емкость конденсатора. В этом случае можно воспользоваться разработанной технологами методикой.

Если принято решение об использовании рабочего конденсатора, то на 1 кВт мощности оборудования нужно приобретать электромагнитный элемент с емкостью около 0,7-0,8 мкФ. Для пускового же конденсатора этот показатель составляет приблизительно 1,7-2 мкФ. Причем напряжение в нем должно находиться в пределах не ниже 400 В. При пуске возникает всплеск этого показателя 300-600 В. Этим объясняется подобное требование.

Существуют также другие схемы подключения представленного оборудования. Например, это может быть подсоединение в сеть с расщепленной фазой и экранированными полюсами, а также с ассиметричным статорным магнитопроводом. Но их применяют гораздо реже.

Рассмотрев, что собой представляет однофазный электрический двигатель, можно понять принцип его работы, а также особенности подключения. Это позволяет применять подобное оборудование в самых разных бытовых и производственных целях.

Схемы подключения асинхронного и синхронного однофазных двигателей

  1. Подключение однофазного асинхронного двигателя
  2. С пусковой емкостью
  3. С рабочей емкостью
  4. С обоими конденсаторами
  5. Расчет емкостей
  6. Подключение однофазного синхронного электродвигателя
  7. Метод разгона
  8. Асинхронный пуск синхронного мотора

Сегодня мы рассмотрим подключение однофазного двигателя переменного тока. К таким относят асинхронные и синхронные моторы, питающиеся от одной фазы, которая обычно имеет напряжение 220 Вольт. Они очень распространены в бытовой сфере и мелком производстве, частном предпринимательстве.

Подключение однофазного асинхронного двигателя

Для разгона асинхронного двигателя требуется создать вращающееся магнитное поле. С этим легко справляется трехфазный источник питания, где фазы сдвинуты друг относительно друга на 120 градусов. Но если речь идет о том, как подключить однофазный электродвигатель, то встает проблема: без сдвига фаз вал не начнет вращаться.

Внутри однофазного асинхронного мотора располагаются две обмотки: пусковая и рабочая. Если обеспечить сдвиг фаз в них, то магнитное поле станет вращающимся. А это главное условие для запуска электродвигателя. Сдвигать фазы можно путем добавочного сопротивления (резистора) или индуктивной катушки. Но чаще всего используют емкости – пусковой и/или рабочий конденсаторы.

С пусковой емкостью

В большинстве случаев схема включает в себя только пусковой конденсатор. Он активен только во время запуска мотора. Поэтому способ хорош, когда пуск обещает быть тяжелым, в противном случае вал не сможет разгоняться из-за небольшого начального момента. После разгона пусковой конденсатор отключается, и работа продолжается без него.

Схема подключения двигателя со вспомогательной емкостью представлена на рисунке выше. Для ее реализации вам потребуется реле или, как минимум, одна кнопка, которую вы будете зажимать на 3 секунды во время запуска мотора в ход. Вспомогательный конденсатор вместе со вспомогательной обмоткой включаются в цепь лишь на некоторое время.

Такая схема обеспечивает оптимальный начальный крутящий момент, если имеют место незначительные броски переменного тока во время пуска. Но есть и недостаток – при работе в номинальном режиме технические характеристики падают. Это обусловлено формой магнитного поля рабочей обмотки: оно у нее овальное, а не круговое.

С рабочей емкостью

Если пуск легкий, а работа тяжелая, то вместо пускового конденсатора понадобится рабочий. Схема подключения показана ниже. Особенность заключается в том, что рабочая емкость вместе с рабочей обмоткой включена в цепь постоянно.

Схема обеспечивает хорошие характеристики при работе в номинальном режиме.

С обоими конденсаторами

Компромиссное решение – использование вспомогательной и рабочей емкости одновременно. Этот способ идеален, если двигатель переменного тока пускается в ход уже с нагрузкой, и сама работа тяжела для него. Посмотрите, схема ниже – это словно две схемы (с рабочей и вспомогательной емкостью), наложенные друг на друга. При запуске на несколько секунд будет включаться пусковой механизм, а второй накопитель будет активен все время: от пуска до завершения работы.

Расчет емкостей

Наибольшую сложность для начинающих представляет расчет емкости конденсаторов. Профессионалы подбирают их опытным путем, прислушиваясь к мотору во время запуска и работы. Так они определяют, подходит накопитель, или нужно поискать другой. Но с небольшой погрешностью в большинстве случаев емкость можно рассчитать так:

  • Для рабочего накопителя: 0,7-0,8 мкФ на 1000 Ватт мощности электрического двигателя;
  • Для пускового конденсатора: больше в 2,5 раза.

Пример: у вас асинхронный однофазный электродвигатель на 2 кВт. Это 2000 Ватт. Значит, при подключении с рабочей емкостью нужно запастись накопителем 1,4-1,6 мкФ. Для пусковой потребуется 3,5-4 мкФ.

Подключение однофазного синхронного электродвигателя

Несмотря на сложность конструкции синхронных двигателей, они имеют много преимуществ перед асинхронными. Главное – это низкая чувствительность к скачкам напряжения, ведущих к резкому уменьшению или увеличению силы тока. Не менее значим и тот факт, что синхронные моторы могут работать даже с перегрузкой, не говоря уже об оптимальном режиме реактивной энергии и вращении вала с постоянной скоростью. Однако подключение – трудоемкий процесс, и это уже недостаток.

Читать еще:  Глубокий тюнинг двигателя ваз

Метод разгона

Нельзя пустить в ход однофазный синхронный двигатель, просто подав питание на его обмотки. Потому что в момент включения направление питающего тока в статорных намотках соответствует рисунку (а). В это время на ротор, который еще находится в состоянии покоя, действует пара сил, которая будет пытаться крутить вал по часовой стрелке. Но через половину периода в статорных намотках ток поменяет свое направление. Поэтому пара сил будет уже действовать в обратном направлении, поворачивая вал против часов стрелки, как на рисунке (б). Поскольку ротор обладает большой инертностью, он так и не сдвинется с места.

Чтобы заставить ротор вращаться, необходимо, чтобы он успевал сделать хотя бы половину оборота, чтобы изменение направления тока не повиляло на его вращение. Это возможно, если разогнать вал при помощи посторонних сил. Это можно сделать двумя путями:

  1. Вручную;
  2. С использованием второго двигателя.

Собственной силой рук можно разогнать только маломощные синхронные электродвигатели. А для средне- и высокомощных агрегатов придется использовать другой мотор.

При разгоне с посторонней силой ротор начинает вращаться со скоростью, близкой к синхронной. Потом только включается обмотка возбуждения, и затем – статорная намотка.

Асинхронный пуск синхронного мотора

Если в наконечниках на полюсах ротора уложены стержни из металла, и они соединены между собой по бокам кольцами, то мотор должен запускаться асинхронным методом. Эти стержни играют роль вспомогательной обмотки, которая есть у асинхронного двигателя. При этом намотку возбуждения закорачивают с помощью разрядного резистора, а статорную обмотку подключают к сети. Только так можно обеспечить такой же разгон, как и у асинхронного электродвигателя. Но после того, как скорость вращения максимально приблизится к синхронной (достаточно 95% от нее), намотку возбуждения соединяют с источником постоянного тока. Скорость становится полностью синхронной, что влечет за собой снижение ЭДС индукции вспомогательной обмотки вплоть до нуля. И она отключается автоматически.

Важно! Вспомогательные металлические стержни должны обладать высоким активным сопротивлением. В противном случае пусковой момент будет недостаточным для разгона ротора. А закорачивать намотку возбуждения необходимо по одной простой причине: если этого не сделать, то у нее в момент пуска случится пробой, потому что она задает вращение в том же направление, что и пусковая обмотка.

Схема и способ подключения вашего двигателя будет зависеть от того, какой он у вас: синхронный или асинхронный. В учет идет также мощность мотора, а также способ пуска: с нагрузкой или без. Разобраться в рисунках вам поможет элементарное понимание механики и электромагнитных явлений.

Однофазные электродвигатели 220в

Однофазная электросеть предъявляет определенные условия к конструкции электродвигателя. В ней необходимо совместить один из способов получения крутящего момента с техническими возможностями однофазной электрической сети 220 В.

Трехфазная или двухфазная электросеть в принципе обеспечивает перемещение максимума магнитного поля. Но в однофазной сети этого нет. Тем не менее, однофазные движки работают. Далее более детально расскажем о том, почему это происходит.

Что общего в совершенно разных движках

Одной из технических задач, решаемых любым двигателем, является скорость вращения вала при заданном крутящем моменте. На частоте 50 Гц, основываясь на перемещении максимума магнитного поля при одной паре полюсов ротор, соответственно и вал, могут совершить лишь 3000 об/мин или менее. В таких случаях используются синхронные и асинхронные движки. У синхронных скорость определяется количеством пар полюсов, так же как и у асинхронных моделей. При необходимости получить более высокие скорости вращения с этими двигателями применяются специальные редукторы.

В коллекторных моделях в отношении скорости вращения существенно больше свободы. Скорость вращения, как и крутящий момент в них зависят от напряженности магнитных полей статора и ротора. Эти поля можно получить как прямым присоединением движка к однофазной сети 220 В, причем в двух вариантах, так и с использованием выпрямителя. Таким образом, один и то же коллекторный двигатель, присоединенный к сети 220 В, обеспечит четыре скорости вращения соответственно схемам соединения его обмоток и виду напряжения питания на его клеммах.

Хотя однофазные движки 220 В принципиально разные, их назначение одинаковое. Они применяются главным образом:

  • в бытовых электроприборах;
  • промышленных вентиляторах и кондиционерах небольшой мощности;
  • маломощных насосах;
  • определенной группе станков и т.п.

Это оборудование не требует электрической мощности более десяти киловатт. Помимо общего питающего напряжения, как и все движки с выходным валом, они состоят из статора и ротора. Но в коллекторном двигателе присутствует коллектор, а в некоторых моделях синхронных машин – кольца. А это значит, что в них нет изолированной электрической цепи, как в асинхронном двигателе. А контакт щетки с ламелями или кольцами сопровождается искрением.

По этой причине область применения коллекторных и синхронных движков ограничена условиями окружающей среды. Но для моделей с ротором, выполненным из специальных магнитных материалов, нет ограничений. А их работа отличается от асинхронных движков только более высоким значением скорости вращения синхронно с электромагнитным полем. Поэтому далее рассмотрим лишь однофазные асинхронные двигатели 220 В (ОАД).

Разновидности ОАД

Любой ОАД содержит рабочую обмотку. Она также именуется как основная. Примерно две трети поверхности статора, охватывающей ротор, приходится на основную обмотку. Остальная часть статора – это дополнительная (пусковая, вспомогательная) обмотка. Форма ротора может быть различной и обуславливается специализацией движка. Наиболее распространены модели, в которых ротор имеет вид цилиндрической болванки. В ОАД мощностью побольше – это биметаллическая конструкция.

Так называемая «беличья клетка» из материалов на основе меди, которые обеспечивают минимум потерь. В болванку эту конструкцию превращает заполнение свободного пространства алюминиевым сплавом. Но и сама клетка может изготавливаться из материала на основе алюминия. Другой разновидностью ротора ОАД может быть форма в виде стакана.

Этот ротор также именуется полым. Он менее инертный, а также менее прочный. По этой причине движки с этим ротором используются для специальных задач и распространены не так широко, как те, у которых ротор-болванка. Пусковая обмотка создает магнитный поток, направленный под углом к магнитному потоку основной обмотки. Токи в обмотках должны характеризоваться определенным фазовым сдвигом. Его получают последовательным соединением с пусковой обмоткой одного из перечисленных элементов:

  • резистора,
  • дросселя,
  • конденсатора.
Читать еще:  Электронная диагностика двигателя своими руками

Элемент вместе с пусковой обмоткой эмулирует двухфазную электросеть, которая обеспечивает пространственное перемещение максимума магнитного потока между обмотками. Однако это техническое решение необходимо лишь для того, чтобы ротор начал вращаться в нужном направлении. По мере увеличения скорости вращения задействованная пусковая обмотка все больше уменьшает крутящий момент на вале движка. По этой причине она тем или иным способом отсоединяется вскоре после разгона ротора до заданной скорости.

Резистор и дроссель могут быть встроены в двигатель, поскольку необходимые сопротивление или индуктивность легко достигаются отличием характеристик провода обмоток или конструкцией пусковой обмотки. Например, существуют такие разновидности ОАД, в которых в явно выраженных полюсах содержится короткозамкнутый виток. Это так называемые экранированные полюсы. Другой способ – несимметричные полюсы. Они определили наименование этих разновидностей ОАД. Эффективность движков невысока, но они получаются компактными. Широко применяются в бытовых вентиляторах.

Из трех элементов, используемых для получения фазового сдвига, самым лучшим является конденсатор. Резистор или дроссель могут обеспечить угол меньше 90 градусов. А конденсатор создает фазовый сдвиг именно в 90 градусов. При этом могут быть три схемы, которые отличаются пусковыми и рабочими характеристиками. При пуске движка необходим конденсатор с емкостью побольше. А в рабочем режиме оптимальный вариант – конденсатор небольшой емкости.

Емкость рабочего конденсатора в микрофарадах определяется примерно как 4/5 мощности движка в киловаттах. Емкость пускового конденсатора в микрофарадах определяется примерно как 2 мощности движка в киловаттах. Чтобы сэкономить на конденсаторах, которые должны быть рассчитаны как минимум на напряжение 330 В, путем переключения их получается как пусковая, так и рабочая емкость. Конденсаторные схемы показаны далее на изображениях:

Коллекторные движки (КД)

Эти двигатели в принципе только однофазные. Хотя их можно включать и в трехфазную сеть, но только через выпрямительные диоды. КД можно разделить на две группы по способу получения магнитного поля статора:

  • от постоянного магнита;
  • от электромагнита.

Прямое присоединение к сети 220 В допустимо лишь для электромагнитных моделей КД. В них ротор является якорем и может соединяться с сетью либо напрямую (параллельное соединение), либо через обмотку статора (последовательное соединение). Изменение полярности происходит в обеих обмотках. Это определяет сохранение направления вращения ротора. А если магнит постоянный, значит, в якоре направление магнитного потока меняется, а в статоре нет. Поэтому ротор такого движка будет колебаться, но не вращаться.

  • Если якорь и статор напрямую присоединены к сети 220 В, КД оказывается под угрозой разноса. Этот эффект появляется при пропадании контакта с сетью в обмотке статора.

Хотя параллельное соединение более эффективно, поскольку при этом величина тока больше, для надежности предпочтительнее последовательное соединение. Направление вращения при этом зависит от того, какими концами соединены между собой, а соответственно и с сетью, обмотки движка. Если при этом движок недостаточно эффективен, его надо присоединить к сети через выпрямительный мост. Если на его выходе будет применен конденсатор, это еще больше увеличит эффективность КД.

КД используются там, где необходима наиболее простая конструкция электрооборудования. Эти движки создают много шума, коллектор и щетки изнашиваются, загрязняют изделие графитовой пылью, уменьшая надежность и долговечность электрооборудования. Электробезопасность при этом также ухудшается. По мере развития высоковольтных транзисторов появляется все больше электрооборудования с асинхронными управляемыми приводами. Но определенная ниша электрооборудования для КД, безусловно, останется.

Преимущества и недостатки однофазных электродвигателей

Электродвигатель является незаменимым элементом для работы как небольшого бытового прибора, так и промышленного оборудования. Установленные в оборудовании двигатели адаптированы к однофазной или трехфазной сети — в зависимости от напряжения в розетках. Насколько они разные?

Основное различие между указанными типами двигателей касается адаптации к конкретным системам. Однофазные двигатели подключаются к однофазной установке с напряжением 220 В, в то время как стандартное напряжение в трехфазной сети составляет 380 В. Более того, в случае однофазного двигателя мы имеем дело с одной обмоткой (вернее с двумя — основной, т.е. рабочей и пусковая), в то время как в трехфазном двигателе их целых три. Проще говоря, напряжения, характерные для одной и трех фаз, можно описать как 1×220 В и 3×380 В соответственно.

Разница в мощности двигателей: мощность однофазных двигателей обычно составляет от 0,1 кВт до 3 кВт, хотя на практике однофазные приводы мощностью более 2 кВт встречаются редко. Что касается трехфазных двигателей, то самые слабые из них имеют мощность около 3 кВт. Специфика работы обсуждаемых двигателей тесно связана с системами, которым они соответствуют. Для однофазной системы характерна стабильность, чего нельзя сказать о трехфазной системе. С другой стороны, трехфазная система, несомненно, эффективнее.

Распространенная проблема с трехфазным двигателем — обрыв фазы. Результат такой поломки может серьезно повредить двигатель. Эта проблема не возникает с однофазными установками, поскольку двигатель просто отключается при обрыве фазы. Из-за наличия только одной фазы ее потеря приводит к отсутствию напряжения. Однако следует учитывать, что современные трехфазные двигатели оборудованы очень эффективной защитой от обрыва фазы.

При сравнении однофазного и трехфазного электродвигателей следует также упомянуть отсутствие пускового момента мотора. Поэтому такие двигатели оснащаются специальными пусковыми устройствами.

Преимущества однофазных электродвигателей

  • простая конструкция
  • быстрота изготовления
  • относительно низкая цена
  • надежность
  • отсутствие затрат на ремонт при эксплуатации
  • небольшой вес, компактность
  • работа от сети 220 В без преобразователей

Недостатки однофазных электродвигателей

  • низкий коэффициент мощности (1-2 кВт).
  • высокие пусковые токи
  • низкий КПД, по сравнению с трехфазными
  • сложность регулировки скорости
  • ограничение скорости двигателя в зависимости от частот питающей сети.

Однофазные двигатели используются во всех видах бытовой техники и электроники, которые мы используем в своих домах. В домашних условиях мы обычно имеем дело с однофазной системой. С другой стороны, трехфазные двигатели необходимы там, где мощность важнее стабильности напряжения, поэтому они используются в основном в промышленности и мастерских.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector