Sw-motors.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обмотки многоскоростных асинхронных двигателей

Обмотки многоскоростных асинхронных двигателей

Обмотки для механизированной укладки

Современные обмоточные станки позволяют укладывать только обмотки статоров, не требующие поднятия шага на заключительной стадии укладки. Такими обмотками являются однослойные концентрические (см. п. 4.5.1), одно-двухслойные (рис. 4.15) и двухслойные концентрические (рис. 4.16).

Катушечная группа одно-двухслойной обмотки содержит катушки с различным числом витков: одинарным — малые катушки и двойным — большие катушки. Общее число катушек в каждой катушечной группе составляет q — N5^, где N^K число больших катушек в группе. В трехфазных машинах нашли применение одно-двухслойные обмотки только с одной большой катушкой

в группе. В двухфазных машинах используются одно-двухслойные обмотки с большим числом q (см. § 4.6).

Двухслойная концентрическая обмотка (рис. 4.16) строится на базе обычной двухслойной путем изменения последовательности соединений в лобовых частях. Она может быть выполнена вразвалку по типу однослойных концентрических обмоток.

Наиболее экономичным ступенчатым способом изменения частоты вращения асинхронных двигателей является переключение двигателя на работу с другим числом полюсов. Возможность изменения числа полюсов двигателя может быть достигнута установкой в пазы статора двух независимых обмоток с разным числом полюсов (двухоб-моточные многоскоростные двигатели), например 4А132М6/4УЗ, 4АМ6/4УЗ, либо переключением схемы соединения катушечных групп одной обмотки (однообмоточные

Рис. 4.16. Схема двухслойной концентрической обмотки, z = 24, 2р — 4, q = 2

Рис. 4 17. Схема двухслойной двухскоростной обмотки статора, z = 36, 2р = 4/2, соединение

двухскоростные двигатели, рис. 4.17). Последний метод широко применяется, в частности, для изменения числа полюсов двигателей в отношении 1:2 (двигатели 4A100S8/4Y3, 4А180М12/6УЗ, 4А200Ь4/2УЗ и др.).

В последние годы разработаны схемы обмоток, дающие возможность путем переключения катушечных групп изменять числа полюсов и в отношении, отличном от 1:2, с сохранением достаточно высокого обмоточного коэффициента для обеих частот вра-

Рис. 4.18. Принципиальная схема соединений

двухскоростного асинхронного двигателя по

1 — 9 — катушечные группы обмотки; НС1 — НСЗ — выводы обмотки для включения на низшую частоту вращения; ВС1 — ВСЗ — выводы обмотки для включения на высшую частоту вращения

щения и числа выводных концов обмотки (не более шести). Особенность этих схем заключается в специфической компоновке катушечных групп из разновитковых катушек, при которой изменение точек подсоединения обмотки к питающей сети приводит не только к изменению полярности отдельных катушечных групп, но и к переключению групп между фазами или даже к отключению отдельных катушек. При переключениях изменяется и амплитуда МДС обмотки при разных числах полюсов, поэтому такой метод построения схем называют полюсно-ам-плитудной модуляцией (ПАМ). Принцип переключений, характерный для этого метода, иллюстрируется принципиальной схемой (рис. 4.18). Такие полюснопереключаемые обмотки находят применение, например, в двухскоростных асинхронных двигателях серии 4А h = 180 4-250 мм при соотношении чисел полюсов 8 :6.

Полюснопереключаемые обмотки асинхронных двигателей серии 4А с h = = 160 -г- 200 мм при соотношении чисел полюсов 6: 4 построены по схеме Харитонова. Двигатели имеют две обмотки: основную двухслойную и дополнительную однослойную (рис. 4.19). Основная обмотка — полюс-нопереключаемая. При соединении на 2р = 4 включается только основная обмотка, соединенная треугольником при а = 1. При работе двигателя на 2р = 6 основная обмотка соединяется в звезду с двумя параллельными вет-

вями и последовательно с ней включается дополнительная обмотка (рис. 4.19, в).

Для трехскоростных и четырехскорост-ных асинхронных двигателей используют оба принципа изменения числа полюсов: устанавливают две независимые обмотки, каждая из которых (в четырехскоростных) или одна из них (в трехскоростных двигателях) выполняется полюснопереключаемой. В обмотках в большинстве случаев используют более простые схемы переключения числа полюсов в отношении 1:2. Так, двигатели 4А112М6/4/2УЗ имеют две независимые обмотки статора, одна из которых рассчитана на шесть полюсов, а вторая полюсно-переключаемая — на два и четыре полюса. В двигателях 4А180М12/8/6/4УЗ обе обмотки выполнены полюснопереключаемыми, одна—на 12 и 6 полюсов, а вторая — на 8 и 4 полюса.

В четырехскоростных двигателях серии 4А с высотами оси вращения 100 мм при соотношении чисел полюсов 8:6:4:2 обмотка на соотношение числа полюсов 8:6 построена по методу ПАМ. Схемы каждой из обмоток таких машин не имеют принципиальных отличий от рассмотренных выше.

двухфазных и однофазных

Двухфазные и однофазные двигатели имеют на статоре две обмотки (две фазы обмотки), расположенные с пространственным сдвигом их осей на электрический угол 90°. Двухфазные двигатели применяются для управляемых приводов и в схемах автоматического управления. Они питаются от двухфазной сети, сдвиг фаз в которой создается схемой управления. Обмотки в статоре двигателя — обмотка возбуждения и обмотка управления — располагаются так, что их оси сдвинуты в пространстве на электрический угол 90°. Они могут быть и неодинаковыми. Если МДС, создаваемые токами каждой из обмоток, равны, а их> фазы сдвинуты по времени на 90°, в двигателе создается вращающееся круговое электромагнитное поле. При изменении МДС одной из обмоток или угла сдвига фаз токов поле становится эллиптическим и электромагнитный момент двигателя уменьшается.

Обмотка возбуждения двухфазных двигателей питается неизменным по амплитуде напряжением. Регулирование осуществляется изменением амплитуды тока обмотки управления (амплитудное управление) или его

Рис. 4.19. Полюснопереключаемая обмотка по схеме Харитонова, z = 54, 2р = 6/4: а — основная обмотка; б — дополнительная обмотка; в — соединение основной и дополнительной обмоток на = 4 и 6

фазы (фазовое управление). Часто применяется регулирование и фазы, и амплитуды тока обмотки управления (амплитудно-фазовое управление).

Однофазные двигатели питаются от однофазной сети. В однофазных конденсаторных двигателях обмотки статора выполняются различными. Во время работы двигателя они постоянно соединены с сетью. Вращающееся поле образуется за счет сдвига по фазе токов одной из обмоток путем последовательного с ней включения конденсатора. Емкость постоянно включенного (рабочего) конденсатора рассчитывается исходя из условия получения кругового поля при номинальной нагрузке двигателя. Для получения большого момента при пуске двигателя емкости рабочего конденсатора оказывается недостаточно, поэтому на время пуска двигателя параллельно с рабочим включают пусковой конденсатор, который отключается после разгона двигателя. Суммарная емкость рабочего и пускового конденсаторов обеспечивает возрастание магнитного потока и тока двигателя, что увеличивает пусковой момент двигателя.

В однофазных двигателях с коротко-замкнутым витком на полюсе (двигателях с экранированными полюсами) одна из обмоток статора состоит из многовитковых катушек, насаженных на сердечники явно выраженных полюсов. Вторая обмотка представляет собой короткозамкнутый виток, охватывающий часть площади полюсного наконечника. Ток в витке, возникающий под действием наводимой в нем ЭДС, изменяет фазу потока через эту часть полюса. Поток раздваивается, и возникает эллиптическое поле. Двигатели имеют небольшой пусковой момент и применяются в приводах с малым моментом сопротивления на валу во время пуска, например в бытовых вентиляторах. Из-за низких энергетических показателей двигателей с экранированными полюсами их выпускают лишь на небольшие мощности — до нескольких десятков ватт.

Большинство однофазных асинхронных двигателей рассчитано на работу при пульсирующем электромагнитном поле, созданном МДС одной из обмоток — главной (рабочей) фазы обмотки. Вторая обмотка двигателя — вспомогательная. Ее называют также пусковой, так как она включается лишь на время пуска для создания вращающегося поля, необходимого для образования пускового момента. После пуска обмотка отключается и не принимает участия в работе двигателя.

Рабочая обмотка занимает 2/3 пазов

статора, пусковая — 1/3. Она, как правило, отличается от рабочей по числу витков, катушек и по площади поперечного сечения проводников. Сдвиг фаз токов рабочей и пусковой обмоток достигается изменением активного или реактивного сопротивления пусковой обмотки по сравнению с рабочей. С этой целью последовательно с пусковой обмоткой включается пусковой элемент — резистор или конденсатор (соответственно однофазные двигатели с пусковым сопротивлением или пусковым конденсатором). Чтобы избежать установки пусковых элементов, которые должны быть рассчитаны на пусковой ток обмотки, во многих двигателях пусковую обмотку выполняют с повышенным сопротивлением. Для этого ее наматывают проводом меньшего сечения, чем рабочую, или укладывают дополнительные бифилярные витки. С установкой бифи-лярных витков длина провода обмотки возрастает, ее активное сопротивление увеличивается, а индуктивное сопротивление и МДС остаются такими же, как и без бифилярных витков.

Читать еще:  Двигатель 5тдф расход топлива

В статорах большинства одно- и двухфазных машин применяют всыпные распределенные обмотки. Сосредоточенные катушечные обмотки используются только в некоторых конденсаторных двигателях малой мощности и асинхронных двигателях с экранированными полюсами.

Среди распределенных обмоток наибольшее распространение получили однослойные обмотки с концентрическими катушками и одно-двухслойные. Реже применяют двухслойные обмотки с укорочением шага.

Однослойные концентрические обмотки для уменьшения вылета лобовых частей катушек в большинстве машин выполняют вразвалку, так же как в трехфазных машинах (рис. 4.20, а), причем при нечетном q большая катушка каждой группы выполняется «расчесанной», т. е. подразделяется по числу витков пополам и лобовые части каждой половины отгибаются в противоположные стороны (рис. 4.20,6).

Одно-двухслойные обмотки, структура которых рассмотрена в п. 4.5.5, выполняются с одной или большим числом больших катушек в каждой катушечной группе (рис. 4.21).

Схемы двухслойных одно- и двухфазных обмоток по существу не отличаются от аналогичных схем трехфазных обмоток, рассмотренных в п. 4.5.2.

В однофазных двигателях обмотки главной и пусковой фаз в большинстве случаев выполняются однослойными из концентрических катушек (рис. 4.22). В машинах с ча-

Рис. 4.24. Распределение проводников синусной обмотки по пазам статора и кривая МДС обмотки асинхронного однофазного двигателя с пусковой фазой:

1 — проводники рабочей обмотки; 2 —проводники пусковой обмотки; 3 — кривая МДС

В ряде специальных машин малой мощности применяют более сложные обмотки с неравновитковыми катушками, например синусную обмотку. В синусной обмотке проводники фазы распределены в пазах неравномерно. Их число меняется от паза к пазу, что позволяет приблизить кривую МДС фазы к синусоидальной кривой (рис. 4.24). Обмоточный коэффициент таких

обмоток рассчитывается с помощью векторных диаграмм — звезд пазовых ЭДС.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Асинхронный двигатель с короткозамкнутым ротором

Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

Конструкция

В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока. Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой. Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

Рис. 1. Строение асинхронного двигателя с КЗ Ротором

Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия. К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

Рис. 2. Ротор асинхронного двигателя с КЗ обмотками

Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

  • однофазные;
  • двухфазные;
  • трёхфазные.

Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

s = 100% * ( ns / n1) = 100% * (n1 — n2) / n1 , где ns частота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.

Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

Читать еще:  Эндоскопия двигателя что это такое

Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.

Рис. 3. Кривая крутящего момента скольжения

При увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.

Преимущества и недостатки

Повсеместное использование асинхронных двигателей с короткозамкнутыми роторами обусловлено их неоспоримыми преимуществами:

  • стабильностью работы на оптимальных нагрузках;
  • высокой надёжностью в эксплуатации;
  • низкие эксплуатационные затраты;
  • долговечностью функционирования без обслуживания;
  • сравнительно высокими показателями КПД;
  • невысокой стоимостью, по сравнению с моделями на основе фазных роторов и с другими типами электромоторов.

Из недостатков можно отметить:

  • высокие пусковые токи;
  • чувствительность к перепадам напряжений;
  • низкие коэффициенты скольжений;
  • необходимость в применении устройств, таких как преобразователи частоты, пусковые реостаты и др., для улучшения характеристик электромотора;
  • ЭД с короткозамкнутым ротором нуждаются в дополнительных коммутационных управляющих устройствах, в случаях, когда возникает необходимость регулировать скорость.

Электродвигатели данного типа имеют приличную механическую характеристику. Несмотря на недостатки, они лидируют по показателям их применения.

Основные технические характеристики

В зависимости от класса электродвигателя, его технические характеристики меняются. В рамках данной статьи не ставится задача приведения параметров всех существующих классов двигателей. Мы остановимся на описании основных технических характеристик для электромоторов классов 56 А2 – 80 В2.

В этом небольшом промежутке на линейке моделей эелектромоторов с короткозамкнутыми роторами можно отметить следующее:

Мощность составляет от 0,18 кВт (класс 56 А2) до 2,2 кВт (класс 80 В2).

Ток при максимальном напряжении – от 0,55 А до 5А.

КПД от 66% до 83%.

Частота вращения вала для всех моделей из указанного промежутка составляет 3000 об./мин.

Технические характеристики конкретного двигателя указаны в его паспорте.

Подключение

Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.

Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.

Схемы включения понятны из рисунка 4.

Рис. 4. Схемы подключения

Для подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.

Рис. 5. Примеры схем подключений в однофазную сеть

С целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.

Двухскоростной 3-фазный двигатель (подключение)

Имеется — 3-фазный двигатель с 6-ю выводами(две скорости).
Надо — подключить его к 3-фазной сети с управлением по скорости и реверсу.
Заранее спасибо!

ChIgor написал :
Имеется — 3-фазный двигатель с 6-ю выводами(две скорости).

А с чего Вы взяли что 2-х скоростной . Может быть это начало и конец 3-х обмоток двигателя . Или прозванивали .

Это мое мнение и его не навязываю

ChIgor , — фото борна и бирки двигателя?

Ким написал :
А с чего Вы взяли что 2-х скоростной . Может быть это начало и конец 3-х обмоток двигателя . Или прозванивали .

Стоял на токарном станке. Там два комплекта обмоток, обе подключены в «звезду». Управлялся по скорости и реверсу. Схема управления утрачена и её надо восстановить.

ПPOPAБ написал :
ChIgor , — фото борна и бирки двигателя?

ChIgor написал :
Стоял на токарном станке. Там два комплекта обмоток, обе подключены в «звезду».

Чудо враждебной техники? Двигатели токарных станков обычно одно скоростные и не реверсируются.

ChIgor написал :
Там два комплекта обмоток, обе подключены в «звезду».

Прозвонили или предполагаете?

ChIgor написал :
Схема управления утрачена и её надо восстановить.

«Фамилию» станка в поиск забить- не.

Сам двигатель и борно открытое сфотографируйте, плиз.

ПPOPAБ написал :
Двигатели токарных станков обычно одно скоростные и не реверсируются.

То что односкоростные — согласен. А вот то что реверса нет — . Спорить не буду. Но у меня на работе была мастерская и стоял у нас токарный станок. 100% у него был реверс. Марку я не знаю его, но помню точно.

ChIgor написал :
Там два комплекта обмоток, обе подключены в «звезду».

С Чего Вы взяли . Или видны концы обмоток .

Это мое мнение и его не навязываю

  • реверс делается путем перекидки любых двух фаз трехфазного двигателя.
  • реверс делается путем перекидки любых двух фаз трехфазного двигателя.

Это и «ежику» понятно. Но реверс можно сделать и механически, переключением определенных шестерен, при этом электродвигатель направления вращения не меняет. Вот это имелось ввиду ( мне так кажется . )

Это мое мнение и его не навязываю

Ким написал :
Вот это имелось ввиду ( мне так кажется . )

Совершенно верно. Для металлообрабатывающего оборудования.
Реверс и переключение оборотов на двигателе- весьма не традиционное решение для станочного парка.

ПPOPAБ написал :
Совершенно верно. Для металлообрабатывающего оборудования.
Реверс и переключение оборотов на двигателе- весьма не традиционное решение для станочного парка.

Обычное дело На память приходит 16е16кп. Отлично режет резьбу но при массовом производстве проблемы с двигателем — реверс.
Резьбонарезные старые мозг выносили. А мастерицы-дуры электрикам и обмотчикам — ремонтировать не умеете..
Обмотки надо прозвонить между собой. Если не звонятся подключать по три фазы. Сообщить на форум результат. Сообщить цель, вы восстанавливаете станок? Или просто двигатель подключаете? Схемы разные.

Классика жанра 1к62:

ChIgor написал :
Имеется — 3-фазный двигатель с 6-ю выводами(две скорости).
Надо — подключить его к 3-фазной сети с управлением по скорости и реверсу.
Заранее спасибо!

Не это ищете? :- Полное описалово здесь: » >

Обмотчик электрических машин — Схемы обмоток статоров многоскоростных двигателей

Содержание материала

  • Обмотчик электрических машин
  • Классификация и основные элементы
  • Потери и кпд электрических машин
  • Особенности электрических машин различных типов
  • Требования к изоляции
  • Изоляционные материалы
  • Обмоточные провода
  • Методы изолирования токопроводящих частей электрических машин
  • Виды и конструкция изоляции обмоток
  • Виды обмоток
  • Основные элементы и обозначения обмоток машин переменного тока
  • Способы изображения схем обмоток
  • Схемы трехфазных однослойных обмоток статоров
  • Схемы трехфазных двухслойных обмоток статоров
  • Соединение обмоток статоров в несколько параллельных ветвей
  • Обмотки статоров с дробным числом пазов на полюс и фазу
  • Схемы обмоток статоров многоскоростных двигателей
  • Особенности схем обмоток одно- и двухфазных двигателей
  • Намотка катушек из круглого провода
  • Укладка однослойных обмоток статоров из круглого провода
  • Укладка двухслойных обмоток статоров из круглого провода
  • Механизация изготовления и укладки обмоток статоров из круглого провода
  • Обмотки статоров для механизированной укладки
  • Механизированная намотка статоров совмещенным методом
  • Заклинивание пазов обмоток статоров
  • Механизированная намотка статоров раздельным методом
  • Формовка и бандажирование лобовых частей обмотки статоров
  • Комплексная механизация намотки статоров
  • Изготовление катушек из прямоугольного провода
  • Укладка обмоток статоров в полуоткрытые пазы
  • Укладка обмоток статоров в открытые пазы
  • Крепление обмоток статоров из прямоугольного провода
  • Изготовление стержневых обмоток статоров машин переменного тока
  • Особенности укладки обмоток статоров крупных электрических машин
  • Схемы обмоток фазных роторов
  • Обмотки фазных роторов с дробным числом пазов на полюс и фазу
  • Таблицы положений стержней в волновых обмотках роторов
  • Технология изготовления стержней волновых обмоток фазных роторов асинхронных двигателей
  • Технология укладки стержневой обмотки ротора
  • Короткозамкнутые роторы
  • Основные элементы и обозначения обмоток якорей машин постоянного тока
  • Простые петлевые обмотки машин постоянного тока
  • Уравнительные соединения машин постоянного тока первого рода
  • Простые волновые обмотки машин постоянного тока
  • Несимметричные волновые обмотки машин постоянного тока
  • Сложные петлевые и волновые обмотки машин постоянного тока
  • Уравнительные соединения машин постоянного тока второго рода
  • Комбинированные обмотки машин постоянного тока
  • Изготовление катушек якоря из круглого провода
  • Изготовление катушек якоря из прямоугольного провода
  • Особенности изготовления одновитковых обмоток якоря
  • Подготовка якоря к укладке обмотки якоря
  • Укладка обмотки якоря
  • Конструкция и типы коллекторов
  • Пайка коллекторов
  • Крепление обмоток якорей и роторов
  • Намотка проволочных бандажей
  • Бандажи из стеклоленты
  • Отделка якоря
  • Крепление обмоток роторов турбогенератора
  • Виды полюсных катушек обмоток возбуждения
  • Катушки обмоток возбуждения из изолированного провода
  • Катушки обмоток возбуждения из неизолированной шинной меди, намотанной плашмя
  • Катушки обмоток возбуждения из шинной меди, намотанной на ребро
  • Особенности изготовления катушек возбуждения крупных синхронных гидрогенераторов
  • Пропиточные составы и методы пропитки обмоток
  • Сушка обмоток
  • Пропитка обмоток лаками с растворителями
  • Пропитка обмоток лаками без растворителей
  • Пропитка обмоток в компаундах
  • Контроль и испытания обмоток
  • Измерение сопротивления обмоток
  • Измерение сопротивления изоляции обмоток
  • Контроль обмоток, уложенных в пазы
  • Проверка правильности маркировки выводных концов фаз обмотки статора
  • Испытание электрической прочности изоляции обмоток
  • Испытание междувитковой изоляции обмоток
  • Автоматизация испытаний электрических машин
  • Виды и система планово-предупредительных ремонтов
  • Частичный ремонт обмоток
  • Ремонт обмоток статоров
  • Ремонт обмоток фазных роторов асинхронных двигателей
  • Ремонт обмоток якорей, катушек возбуждения
  • Заключение, литература
Читать еще:  421 двигатель сколько лошадей

Во многих механизмах требуется изменять скорость в процессе работы. Чаще всего для привода таких механизмов используют двигатели постоянного тока, но в ряде случаев применяют также и асинхронные двигатели, как более дешевые и надежные.
Частоту вращения асинхронного двигателя можно определить по формуле n= 1 — s) = (60f/p)(1 s). Из этой формулы следует, что частоту вращения асинхронного двигателя можно регулировать, изменяя частоту питающего тока I, скольжение s или число пар полюсов двигателя р. На практике применяют все три способа регулирования. Изменение частоты тока возможно с помощью статических преобразователей частоты. Скольжение меняют путем включения активного сопротивления в. цепь фазного ротора. Число полюсов обмотки можно изменить в двигателях, имеющих обмотки, соединенные в специальные схемы.

Такие двигатели называют многоскоростными, а их обмотки — полюсно-переключаемыми.
Переключение чисел обмотки асинхронного двигателя — простой и распространенный метод регулирования, так как не требуется дополнительного оборудования и в то же время обеспечивается работа двигателя с достаточно высокими энергетическими показателями на разных частотах вращения. Он широко применяется на практике, несмотря на то что частота вращения этим методом изменяется только ступенями. Частота вращения поля в машине n= 60f/p. При токе промышленной частоты f= 50 Гц она равна 3000 об/мин при 2р = 2, 1500 об/мин при 2р — 4, 1000 об/мин при 2р — 6 и т. д.
Частота вращения двигателя при переключении ее обмотки на разные числа полюсов меняется в таком же соотношении. Изменения числа полюсов статора можно достичь двумя способами: установкой в пазы статора двух независимых обмоток, выполненных на разные числа полюсов, или переключением схемы соединения катушечных групп одной обмотки.
Первый способ дает возможность получить любые соотношения между числами полюсов и, следовательно, между частотами вращения двигателя. Недостатком такого способа регулирования является неполное использование объема пазов статора, так как в пазы укладываются обе обмотки, а двигатель работает только на одной из них. Вторая обмотка в это время отключена и занятая ею часть объема пазов не используется. Это вызывает необходимость увеличения размеров пазов и всего двигателя по сравнению с односкоростным той же мощности.
Второй способ изменения числа полюсов основан на изменении направлений магнитных потоков в машине путем переключения схемы обмотки. На рис. 37, а на поперечном сечении машины с 2р = 2 условно показано положение двух катушечных групп (1 и 4), принадлежащих одной фазе в двухполюсной обмотке. Стрелками отмечено направление магнитных силовых линий потока машины. На схеме соединения катушечных групп этой фазы также стрелками отмечено направление обтекания их током. Причем направление стрелки над катушечной группой вправо (1-я катушечная группа) соответствует направлению силовых линий потока от центра, а влево (4-я катушечная группа) — к центру. При таком соединении катушечных групп обмотка образует два полюса. На рис. 37, б такое же построение проделано для четырехполюсной машины, одной фазе обмотки которой принадлежат 1, 4, 7 и 10-я катушечные группы.

Рис. 37. Направления потоков в магнитопроводе и условные схемы обмотки одной фазы машины:
а —с двумя катушечными группами при 2р=2, б — с четырьмя катушечными, группами при 2р=4, в — с двумя катушечными группами при 2р=4

При встречном включении четырех катушечных групп, т. е. при принятой в обычных двухслойных обмотках схеме, обмотка образует четыре полюса: два одной и два другой полярности. Такую же картину поля можно получить и при двух катушках в одной фазе обмотки, если их включить не встречно, а согласно, как показано на рис. 37, в. Сравнив между собой направления потоков и схемы обмоток, видим, что изменение направления тока в одной катушечной группе фазы двухполюсной обмотки приводит к увеличению числа полюсов с двух до четырех, т. е. в два раза. Если таким же образом изменить схему соединений двух (4-ю и 10-ю или 1-ю и 7-ю) катушечных групп четырехполюсной машины, то распределение потока будет такое же, как в машине с = 8. Таким образом, изменение направления включения половины катушечных групп в схеме двухслойной обмотки приводит к увеличению числа полюсов машины в два раза.
Этот принцип используется во всех двухскоростных асинхронных двигателях с отношением чисел полюсов 1 : 2, например в двигателях с переключением чисел полюсов с = 2 на = 4 или с = 4 на 2р = 8.
В коробке выводов многоскоростных двигателей шесть зажи- мов,к которым подсоединены выводные концы обмоток (рис. 38, а). Они обозначаются так же, как и выводные концы обычных обмоток (см. табл. 2), но перед обозначением ставится число, указывающее, сколько полюсов будет иметь обмотка, если эти выводы подключить к сети. Для работы двухскоростного двигателя на 2р — 2/4 с числом полюсов 2р = 2 с сетью соединяются выводы 2С1, 2С2 и 2СЗ (рис. 38, б); выводы 4С1, 4С2 и 4СЗ соединены между собой накоротко. Обмотка при этом соединяется в звезду с двумя параллельными ветвями. Если с сетью соединены выводы 4С1, 4С2 и 4С3, а выводы 2С1, 2С2 и 2С3 разомкнуты (рис. 38, в), то обмотка образует четыре полюса и соединяется в треугольник при а — 1.
Аналогичные схемы включения имеют двухскоростные двигатели и на другие числа полюсов (2р = 4/8, 6/12 и т. п.). Схемы соединений — звезда или треугольник — и числа параллельных ветвей каждой из схем определяются требованиями к соотношениям мощностей двигателей при различных частотах вращения.


Рис. 38. Схема включения обмоток на
а — соединения внутри машины, б — включение обмотки на 2р=2 при а= 2, в —включение обмотки на 2р=4 при а— 1

В статор трехскоростного двигателя укладывают две раздельные обмотки: одна обычная, а другая полюсно-переключаемая, например в двигателе на 2р = 4/6/8 обычная обмотка имеет 6 полюсов, а полюсно-переключаемая — 2р = 4/8.
В четырехскоростном двигателе также две самостоятельные обмотки, обе полюсно-переключаемые, например, в двигателе на 2р = 4/6/8/12 одна обмотка может быть включена на 4 или 8 полюсов, а вторая — на 6 или 12.
В новых сериях асинхронных двигателей применяют более сложные схемы полюсно-переключаемых обмоток, которые позволяют изменять числа полюсов и в отношениях, отличных от 1:2. В серии 4А выпускаются, например, двигатели с одной полюсно-переключаемой обмоткой на 2р = 4/6 или на 2р = 6/8 полюсов и т. д. Количество выводных концов и их обозначения остаются такими же, как и в ранее рассмотренных схемах.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector