Sw-motors.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

KOMITART — развлекательно-познавательный портал

KOMITART — развлекательно-познавательный портал

Разделы сайта

  • » На Главную
  • » Радиолюбителю
  • » APEX AUDIO
  • » Блоки питания
  • » Гитарные примочки
  • » Своими руками
  • » Автомобилисту
  • » Service-Manual
  • » PREAMPLIFIERS
  • » Бесплатные программы
  • » Компьютер
  • » Книги
  • » Женские штучки
  • Готовим вкусно и быстро
  • » Игры на сайте
  • » Юмор
  • » Разное — интересное

DirectAdvert NEWS

GNEZDO NEWS

Друзья сайта

Статистика

Как подключить трехфазный электродвигатель к сети 220 В. Регулятор оборотов.

Довольно часто для каких-либо хозяйственных нужд требуется использование трехфазного электродвигателя (например, в качестве привода для эл. наждака, циркулярной пилы, бетономешалки и т. д). Известно, что трехфазные электродвигатели рассчитаны и предназначены для работы в трехфазной сети и далеко не всегда в распоряжении домашнего мастера бывает нужное напряжение

380 В, ведь в подавляющем большинстве частные дома и, тем более квартиры подключены к питающей сети

Существуют разные способы включения трехфазного электродвигателя в однофазную сеть

220 В, самым простым и достаточно надежным из которых является применение фазосдвигающего конденсатора в схеме подключения его обмоток. Само название «фазосдвигающий конденсатор» говорит само за себя: он сдвигает ток по фазе на 90°, создавая в нем двухфазный вращающийся магнитный поток, который, собственно и вызывает вращение вала электродвигателя.

На схеме ниже показано подключение фазосдвигающих конденсаторов к обмоткам, соединенным в «звезду» и «треугольник», однако, следует учесть, что для снижения потерь мощности электродвигателя гораздо целесообразнее использовать соединение обмоток электродвигателя по схеме «треугольник».

Схемы подключения трехфазных электродвигателей с различными соединениями обмоток к однофазной сети

Стоит заметить, что для запуска любого электродвигателя требуется б́ольшая емкость конденсатора, чем для его работы (когда двигатель уже «набрал» обороты). Поэтому, на схеме ниже общая емкость «разбита» на два конденсатора: Сп — конденсатор с дополнительной емкостью для пуска электродвигателя и Ср — основной конденсатор с рабочей емкостью. В случае использования электродвигателя небольшой мощности (до 1 кВт) вполне можно «обойтись» лишь рабочей емкостью Ср, исключив из схемы конденсатор Сп.

Схема подключения трехфазного электродвигателя к однофазной сети:

Резистор R включен в схему в качестве сопротивления для разрядки конденсаторов Сп и Ср, для этого подойдет резистор с сопротивлением 300 Ом. Для изменения направления вращения вала электродвигателя, в схеме предусмотрен тумблер переключатель SA.

Для расчета ёмкости рабочего конденсатора можно воспользоваться формулой:

С раб = 4800 • I / U , мкФ – для двигателей с обмотками, соединенными «треугольником»

С раб = 2800 • I / U , мкФ – для двигателей с обмотками, соединенными «звездой»

Это самый точный и наиболее предпочтительный способ расчета ёмкости рабочего конденсатора, но для его использования необходимо знать значение тока I в цепи двигателя, т. е. потребуются дополнительные измерения. Зная номинальную мощность электродвигателя, рассчитать ёмкость рабочего конденсатора можно так-же по формуле:

С раб = 66• Рном , мкФ, где Рном — номинальная мощность электродвигателя.

Говоря проще, для нормальной работы трёхфазного двигателя в сети

220 В рабочий конденсатор должен иметь ёмкость, близкую к 7 мкФ на каждые 0,1 кВт его паспортной мощности.

Определившись с емкостью рабочего конденсатора, можно определить нужное ее значение для пускового конденсатора: она должна быть примерно в 2,5-3 раза больше рабочего емкости рабочего конденсатора.

Конденсаторы рабочей емкости следует использовать следующих типов: МБГЧ, КГБ, БГТ с рабочим напряжением, превышающим сетевое напряжение примерно в 1,5 раза. Чтобы набрать нужную емкость, можно соединить (спаять) конденсаторы параллельно: тогда их общая емкость будет равна суммарной. Пусковую емкость тоже лучше всего набрать из конденсаторов этих типов, но при кратковременном пуске (не более 2-3 сек) можно использовать электролитические, типов КЭ-2, К50-3, ЭГЦ-М с рабочим напряжением не менее 450 в.

В заключение стоит сказать, что при включении трехфазного электродвигателя в однофазную сеть

220 В следует иметь ввиду неминуемую потерю его мощности. Если частота вращения уменьшается совсем незначительно в этом режиме, то потеря мощности может составлять 50% от номинальной. Поэтому, лучше в сеть

220 В включать электродвигатели с обмотками, соединенными «треугольником»- в однофазной сети они способны развить до 75% от своей номинальной мощности.

Как известно можно изменять (регулировать) скорость вращения асинхронного безколлекторного электродвигателя изменяя частоту питающего двигатель переменного напряжения. На этом принципе был разработан, приведенный здесь, электронный регулятор скорости вращения. Регулятор позволяет изменять скорость вращения в довольно широких пределах — от 1000 до 4000 об/мин.

Регулятор состоит из задающего генератора с регулируемой частотой от 50 до 200 Гц, в который входят мультивибратор на микросхеме К561ЛА7 , счетчик К561ИЕ8 формирующий сигналы управления с фиксированным «мертвым временем» для управления силовыми полевиками полумоста регулятора.

Выходной трансформатор Т1 обеспечивает развязку верхнего и нижнего транзисторов полумоста. Выпрямитель, удвоитель напряжения питающей сети состоит из диодного моста VD9, включенного по нестандартной схеме и конденсаторов фильтра на которых и удваивается напряжение питания полумоста.
Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4.
Для трансформатора управления ключами, использовался каркас трансформатора от БП телевизора KORFUNG Ч/Б. Можно применить любой другой с аналогичным сечением железа — тип магнитопровода не имеет значения. Первичная обмотка содержит 120 витков провода диаметром 0,7мм, с отводом от середины, вторичная — две отдельные обмотки по 60 витков тем же проводом. Данные по вольтажу обмоток: первичка 2х12 вольт, вторички 12 вольт каждая, если сечение железа отличается от заданного, расчитать можно по формулам для трансформаторов на 50Гц. Марка провода роли не играет (медный).
Обе вторичные обмотки нужно хорошо изолировать друг от друга, так как потенциал между ними достигает 640 вольт. Подключать выходные обмотки к затворам ключей необходимо в противофазе.

Регулятор может работать с двигателями мощностью до 500Вт. Для применения регулятора с более мощными двигателями необходимо применить в схеме большее число силовых ключей в параллельном включении и увеличить емкость конденсаторов фильтра питания С3 и С4.
Конструктивно регулятор выполнен на печатной плате размрами 110 х 80мм, трансформатор управления ключами ставится отдельно.

Чтобы не применять дорогой и сложный коллекторный двигатель в механизмах требующих изменения оборотов двигателя, можно обойтись асинхронным трёхфазным двигателем, введя в фазовый провод реостат или простейший регулятор мощности.

Переделка двигателя заключается в изменении якоря двигателя.
По образцу якоря, установленного в двигателе изготавливается «массивный якорь» из магнитомягкой малоуглеродистой стали или из серого чугуна (СЧ). (Чугунный работает лучше.) Из старого якоря можно выпрессовать вал и насадить на него массивный якорь.

Схема устройства запуска приведена на рисунке ниже.

Двунаправленный электронный ключ выполнен на диодах VD1, VD2 и три-нисторах VS1, VS2. Диоды VD3 и VD4 образуют двухполупериодный выпрямитель сетевого напряжения, а резистор R1 и стабилитрон VD5 — стабилизатор выпрямленного напряжения. Управление тринисторами электронного ключа осуществляется транзисторами VT1, VT2. Момент включения электронного ключа устанавливают резистором R7 «Режим». При минимальном сопротивлении резистора ключ открывается в момент максимального напряжения на обмотке Б электродвигателя (см. рис. 2,6), при максимальном — ключ закрыт. Перед запуском двигателя движок резистора R7 переводят в крайнее нижнее (по схеме) положение, соответствующее максимальному фазовому сдвигу токов и, следовательно, наибольшему пусковому моменту на валу двигателя. После запуска тем же резистором устанавливают оптимальный режим работы двигателя в зависимости от его мощности и нагрузки. Как показала практика, устройство запуска эффективно работает с электродвигателями, частота вращения якоря которых не превышает 1500 об/мин и их обмотки соединены треугольником.

Устройство испытано на работе с двумя двигателями: мощностью 370 Вт (типа АААМ63В4СУ1) 1360 об/мин и мощностью 2000 Вт 1380 об/мин. В обоих случаях оно обеспечивало более уверенный запуск двигателя в сравнении с конденсаторной системой и мощность на валу двигателя после запуска была примерно одинаковой.

Детали устройства монтируют на печатной плате, которую размещают в корпусе из изоляционного материала. Тринисто-ры VS1, VS2 и диоды VD1, VD2 устанавливают на плате без теплоотводов. Резисторы — МЛТ, С2-33, конденсатор — К73-17. Транзисторы VT1 и VT2 могут быть любыми из тех же серий. Вместо диодов Д231, тринисторов КУ202Н можно использовать аналогичные другие с допустимым прямым током не менее 10 А и обратным напряжением не менее 300 В. При работе с устройством запуска следует иметь в виду, что все его элементы находятся под напряжением сети 220 В, поэтому необходимо соблюдать меры предосторожности.

Читать еще:  Веломобиль с двигателем своими руками

Уважаемый Пользователь! О том, как получить нужный материал, прочитайте информацию по кнопке ниже:

Подключение трёхфазного двигателя к однофазной сети без конденсаторов: 4 схемы для начинающего мастера

Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от 220 вольт с пусковыми и рабочими емкостями.

Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.

Ниже я показываю 4 схемы реализации такого проекта. Вы можете выбрать для себя любой из них, более подходящий под ваши личные интересы и местные условия эксплуатации.

  • Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов
  • Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе
  • 2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия
    • Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик
    • Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами
  • Преимущества схемы тиристорного преобразователя: автор В Соломыков

С этой темой я впервые столкнулся в конце 1998 года, когда к нам в электролабораторию РЗА пришел друг связист с журналом Радио за №6 от 1996 года и показал статью про безконденсаторный запуск.

Мы сразу решили испытать ее в деле, благо все детали, включая тиристоры и подходящий двигатель, у нас имелись. Как раз был перерыв на обед.

Для проверки спаяли электронный блок навесным монтажом. Справились где-то меньше, чем за час. Схема заработала практически без наладки. Оставили ее для наждака.

Порадовали маленькие габариты блока и отсутствие необходимости подбирать конденсаторы. Особых отличий в потере мощности по сравнению с конденсаторным пуском замечено не было.

Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов

Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.

Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора.

Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.

Три обмотки статора необходимо подключать по схеме треугольника.

Их выводы собираются на клеммной колодке тремя последовательными перемычками.

Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.

Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».

Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.

Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.

Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.

Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.

Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».

Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.

Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.

Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.

Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.

При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.

Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе

Силовая выходная часть электронного ключа, осуществляющая коммутацию обмотки, выполнена на двух мощных диодах (VD1, VD2) и тиристорах (VS1, VS2), включенных по схеме обычного моста.

Однако здесь они выполняют другую задачу: своими плечами из одного тиристора и диода поочередно шунтируют обмотку подключенного электродвигателя при достижении амплитудного значения синусоиды напряжения на схеме.

За счет такого подключения создан электронный ключ двунаправленного действия, реагирующий на положительную и отрицательную полуволну гармоники.

Диодами VD3 и VD4 осуществляется двухполупериодное напряжение сигнала, поступающего на цепи управления. Оно ограничивается и стабилизируется резистором R1 и стабилитроном VD5.

Сигналы на открытие тиристоров электронного ключа поступают от биполярных транзисторов (VT1 и VT2).

Переменный резистор R7 с номиналом на 10 килоом предназначен для регулировки момента открытия силового тиристора. Когда его ползунок установлен в минимальное положение сопротивления, то электронный ключ срабатывает при наибольшем напряжении амплитуды на обмотке B.

Максимальное введение сопротивления резистора R7 закрывает электронный ключ.

Запуск схемы осуществляют при положении ползунка R7, соответствующем максимальному сдвигу фаз токов между обмотками. После этого его сдвигают, определяют наиболее устойчивый режим работы, который зависит от приложенной нагрузки и мощности двигателя.

Все электронные детали со своими номиналами приведены на схеме. Они не являются дефицитными. Их можно заменить любыми другими элементами, соответствующими по электрическим характеристикам.

Вариант их размещения на электронной печатной плате показан на картинке. Регулировочный резистор R7 показан справа двумя подключенными проводами, синим и коричневым. Сам он не виден на фото.

Силовая часть, созданная для работы с электродвигателями небольшой мощности, может выполняться без радиаторов охлаждения, как показано здесь. Если же диоды и тиристоры работают на пределе своих возможностей, то теплоотвод обязателен.

2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия

Здесь я полагаюсь на информацию из интернета, ибо вижу, что в принципе конструкции рабочие, а принципы управления токами в обмотках те же, что предложил В Голик.

Кстати, авторы статей ссылаются на автомобильный украинский журнал «Сигнал» №4 за 1999 год. Пришлось поискать его в интернете. Однако разочаровался, там оказалась полностью перепечатанная статья из журнала Радио под авторством В Голик. Вот так…

Если знаете, где можно найти первоисточник на эту информацию, то сообщите в комментариях.

Электронные ключи, выполненные по технологии Бурлако, работают так же. Они просто выполнены из других, более усовершенствованных полупроводников, как и силовая часть.

Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик

Картинка подключения трехфазного электродвигателя упростилась. Вместо двунаправленного силового блока из двух тиристоров и диодов здесь работает один симистор VS1 серии ТС-2-10.

Он также шунтирует одну обмотку «B» в момент достижения синусоидой напряжения амплитудного значения, когда ток параллельной цепочки минимален.

При этом создается сдвиг фаз токов в параллельных обмотках, как и в предыдущей схеме, порядка 50-80 угловых градусов, что достаточно для вращения ротора.

Работой симитора VS1 управляет ключ, выполненный на симметричном динисторе VS2 для каждого полупериода гармоники напряжения. Он получает команды от фазосдвигающей цепочки, выполненной из резистивно-емкостных элементов.

Сдвиг фазы сигнала конденсатором C дополняется общим сопротивлением R1+R2. Подстроечный резистор R2 на 68 кОм работает как R7 в предыдущей схеме, регулируя время заряда конденсатора и, соответственно, момент подключения VS2, а через него VS1 в работу.

Рекомендации автора по сборке и наладке

Схема испытывалась и предназначена для работы с электродвигателями, раскручивающими ротор до 1500 оборотов в минуту с электрической мощностью 0,5÷2,2 кВт.

Читать еще:  Электрическая схемы пуска однофазных двигателей

На устройствах электронных ключей, работающих с мощными электродвигателями, необходимо обеспечивать теплоотвод с симистора VS1.

При наладке устройства обращают внимание на оптимальную подгонку угла сдвига фаз токов между обмотками, когда двигатель запускается и работает нормально: без шума, гула и вибраций. Для этого может потребоваться изменение номиналов у элементов фазосдвигающей цепочки.

Семисторы можно использовать другой марки. Важно, чтобы они соответствовали электрическим характеристикам. Вместо DB3 допустимо установить отечественный динистор KP1125.

Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами

Она же хорошо подходит под управление двигателями, собранными для вращения со скоростью 3000 оборотов в минуту. С этой целью у нее изменена система подключения обмоток с треугольника на разомкнутую звезду.

На картинке ниже их полярность показана точками.

В этой ситуации создается больший крутящий момент для запуска ротора.

Рассматриваемая схема отличается от предыдущей дополнительным электронным ключом, подключенным к обмотке «A», создающим дополнительно сдвиг фазы тока. Он необходим для трудных условий работы.

Рекомендации автора по наладке и работе не изменились.

Преимущества схемы тиристорного преобразователя: автор В Соломыков

Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.

Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.

Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:

  1. DD1 — К176ЛЕ5;
  2. DD2 — К176 ИР2.

Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.

Логическая часть

Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.

Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.

Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.

Таблица данных К176ИР2 и состояний регистров

мощный трехфазный двигатель (3-4 кВТ) в однофазной сети

Надо подключить 4 кВТ в однофазную сеть! Кто и что может сказать или дать схемки? Искал по сайтам кое что есть но как- то криво все ! То емкость не скажут какую то резистор на нарисують! :-((

Сытный кондер потребуется.

» > — как раз обсуждаем

мамонт написал :
Надо подключить 4 кВТ в однофазную сеть!

Отт халявщики! И не лень тащить было?
По существу: существуют однофазные аналоги. Все остальное от лукавого.

Ехидно: и как, есть прогресс?

in my humble opinion

2мамонт 280 мкФ

Kvost написал :
Отт халявщики! И не лень тащить было? Ехидно: и как, есть прогресс?

4-х киловатник маленький, чего его тащить
А прогресс всегда есть..

Викторыч, при каком подключении?
Судя по номиналу — для треугольника.

Вообще примерный ток P/1,73*U*кпд*cos(fi), получается ампер 16.. (при cos=0,8 и кпд=0,8)
2800*16/220=203 мкф для звезды
4800*16/220=350 мкф для треугольника.

to Desti обычно трёхфазники в однофазную сеть 220 В всегда по схеме треугольника включают , если с конденсатором
да и простые схемы содержат как правило две сборки кондёров для пуска и работы

2Desti Эту тему здесь уже неоднократно обсуждали, повторяться не буду. Давным-давно я для себя вывел эмпирическую формулу 70мкФ/1кВт и забыл теорию. Движки с обмотками треугольником мне не попадались, если наружу торчали 6 концов, то соединял всегда звездой.

Всё-всё, умолкаю Можно по формулам, можно эмпирически. Дело хозяйское.

а как насчет трехфазного конвертера ?

arn написал :
а как насчет трехфазного конвертера ?

На 4кВт? Боюсь, дешевле будет купить однофазный двигатель.

in my humble opinion

Соедини в треугольник, если там звездой, то разбери и пересоедини. Если двиг высокооборотный (три тыщи), то конденсатор емкостью побольше, если нет, то поменьше, а эмпирическая формула в среднем — одна десятая от мощности в микрофарадах, т.е. 400 мкФ. Но лучше смотреть на ток через обмотку и подбирать по минимуму этого тока на той нагрузке, на которой будет эксплуатироваться мотор. Это элементарно делается амперметром. Ну на крайняк подбирай по шуму от мотора — по минимуму шума. Иногда, особенно для высокооборотных моторов приходится на пуск давать бОльшую емкость, чем на работу — т.е. иметь отключаемый дополнительный кондер. Соединяешь так: к двум проводам сеть, третий вывод соедини с одним из первых двух через этот самый вышеописанный конденсатор. Направление вращения будет зависеть от того, к какому из двх первых выводов подцепишь кондер от третьего.

Но лучше всего сопри еще один мотор подобной мощности или выше, и соедини два треугольника друг с другом вершинами, сеть подай на две любых вершины. Раскрути веревкой в нужную сторону один из моторов, который ни с чем механически не соединяй. Второй от него получит почти полноценные три фазы и будет хорошо работать, первый же на холостом много жрать не будет.

в журнале Радио №2 2002 года на стр 32
была интересная статейка по поводу включения 3х фазника в сеть с одной встречновключенной обмоткой.
если найду статью могу скинуть .
кому то отсылал это файлик- но увы не помню .
а сам включал с емкостями Рабочие +Пусковые ( движок гдето 4-5 киловат)
а выключатель от старой стиральной машинки .
у него есть третий контакт который включается только при нажатии
на кнопку . тоесть как раз включает пусковые кондеры .
а после раскрутки ( 2-4 сек ) отпускаешь кнопку и усе )))

2Petrovich Не такая, случаем » > ?

» >
Вот тут одна ссылка. Вообще-то однофазники больше 2,2 кВт мне не попадались, хотя этого может и
хватит если учитывать падение мощности у 3-х фазного двигателя в 1-фазном включении.
И еще, однофазные движки как правило дороже трехфазных раза в 2. Двигатель нужно включать треугольником, а то мощность еще упадет, ну и кондеры хорошие тоже недешевые.

Да вот в ней то на рис 8 и не указана ни емкость кондера ни величина сопротивления!
Я еще не вымер !- ))

pzotov написал :
падение мощности у 3-х фазного двигателя в 1-фазном включении.

И весьма изрядное падение.

движок на 380в. на 4 квт 2800 об. стоит на компрессоре СО-7Б.Пока соеденен звездой.Пытаюсь подключить на 220.Емкость рабочая дошла уже до 503 мКф на 450в(пусковая чувствую ненужна вовсе-качает только до 1 атмосферы.А надо минимум 3 атмосферы. Чувствую что рабочая емкость будет около 1000 мкф.На днях попробую воткнуть еще 200 мкф. Что скажете?

в крайнем случае воспользуюсь этой схемой:

СПОСОБ ПОДКЛЮЧЕНИЯ ТРЕХФАЗНОГО ДВИГАТЕЛЯ К ОДНОФАЗНОЙ СЕТИ
Трехфазные асинхронные электродвигатели с короткозамкнутым ротором обычно подключают к
однофазной сети по схеме, показанной на рис.l. Расчет показывает, а практика подтверждает, что даже
при оптимальном выборе емкости фазосдвигающего
конденсатора С 1 вращающий момент на валу включенного подобным образом двигателя не превышает 35 % номинального. Это объясняется тем, что ток, протекающий по обмотке III двигателя, сдвинут по фазе относительно токов в обмотках 1 и II таким образом, что в суммарном магнитном поле статора, кроме ком*поненты, вращающей ротор в нужном направлении, образуется еще одна, вращающаяся в другую сторону.
Она тормозит ротор, уменьшая момент на валу и бесполезно расходуя свою энергию на нагревание проводов и магнитопровода двигателя.
Отключив обмотку III (рис. 2), удается увеличить вращающий момент до 41 % номинального. Он возрастает еще больше, до 58 %, если вновь подключить эту обмотку, изменив набавление тока в ней (рис. 3). Эффект достигается не только за счет смены направления вращения «вредной» компоненты магнитного поля. Происходит взаимная компенсация создаваемых обмотками II и III составляющих полей, совпадающих по направлению с полем обмотки 1 и потому не участвующих во вращении ротора Экспериментально установлено, что применение двух фазосдвигающих кон*денсаторов облегчает и пуск двигателя.
Емкости конденсаторов С 1 и С2 должны быть одинаковы. Их рассчитывают по известной формуле С=2800*Iф/U, где 1 ф — номинальный фазный ток электродвигателя, А; U=220 В. Пригодны конденсаторы
МБГО, МБГП, МБГТ, К42-4 на постоянное рабочее напряжение не менее 600 В или МБГЧ, К42-19 на переменное напряжение не менее 250 В. Правильность выбора конденсаторов можно проверить, измерив напряжения на каждой из трех обмоток двигателя под нагрузкой. Они должны быть приблизительно равны.
Равенство напряжений на обмотках II и III электродвигателя дает возможность соединить их встречно-параллельно, как показано на рис. 3 штриховой линией. Конденсаторы С 1 и С2 в этом случае заменяют одним удвоенной емкости.

Читать еще:  Энкодер из шагового двигателя схема

Пособие для ремонтника

65. Трехфазные двухскоростные двигатели


Трехфазные двигатели, позволяющие менять число оборотов, очень часто используются в воздушных охладителях для того, чтобы обеспечивать изменение расхода воздуха в соответствии с изменением его температуры: малая скорость (МС) при низкой температуре, например, зимой, и большая скорость (БС) при высокой температуре, например, летом (см. раздел 20.5).
Как правило, двухскоростными двигателями также оснащаются градирни (их работа подробно рассматривается в разделе 73). На рис. 65.1 показан вариант градирни, оборудованной двухскорост-ным двигателем (поз. 1) для привода центробежного вентилятора (поз. 2).

При выключенном вентиляторе и работающем компрессоре температура воды на входе в градирню (поз. 3) начинает повышаться. Термостат (поз. 4), установленный на выходе из градирни, обнаруживает подъем температуры и выдает команду на запуск двигателя с малой скоростью (МС). Если температура воды продолжает расти, термостат переводит двигатель на большую скорость (БС) и градирня работает с максимальной производительностью.

ДВИГАТЕЛЬ С ДВУМЯ РАЗДЕЛЬНЫМИ ОБМОТКАМИ


Это самый простой двигатель. Он представляет собой обычный двигатель, рассчитанный на одно значение напряжения трехфазного переменного тока и имеет клеммную коробку с 6 клеммами (поз. А на рис. 65.2). Схема подключения обмоток этого двигателя к клеммам показана в нижней части рис. 65.2.

Внутри такого двигателя имеются две абсолютно независимых обмотки, каждая из которых предназначена для реализации разного числа оборотов. Если питание подключено к клеммам Ш, IV и 1W двигатель вращается с малой скоростью МС (поз. В). Если питание подано на клеммы 2U, 2V и 2W, двигатель вращается с большой скоростью БС (поз. С).

ВНИМАНИЕ! Схема на рис. 65.2 очень похожа на схему двигателя с раздельным подключением обмоток PW (см. пункт 64.1). Чтобы избежать ошибок, внимательно ознакомьтесь с табличкой на корпусе двигателя и изучите схемы, в противном случае возможны непоправимые последствия.

Действительно, в отличие от двигателя PW, обмотки двухско-ростного двигателя, схема которого изображена на рис. 65.2, никогда не должны быть запитаны вместе, иначе двигатель мгновенно сгорит!

65.1. УПРАЖНЕНИЕ 1. Двигатель с раздельными обмотками


Нарисуйте схему подключения обмоток и управления работой двухскоростного трехфазного двигателя, предназначенного для привода вентилятора градирни, зная, что переключение скоростей обеспечивается термостатом с двухступенчатой регулировкой температуры.
В помощь вам на рис. 65.3 приведено обозначение клемм, имеющееся внутри клеммной коробки.

Решение упражнения 1

Схема подключения обмоток представлена на рис. 65.4.
Двигатель может вращаться с МС (питание подано на клеммы 1U, 1V и 1W) или с БС (запита-ны клеммы 2U, 2V и 2W).
Треугольник вершиной вниз указывает на то, что между контакторами МС и БС существует механическая блокировка. Благодаря ей, как только один из контакторов замкнут, становится невозможным замкнуть другой контактор, даже если вы случайно нажали на него рукой.


Такой тип блокировки позволяет избежать ошибки, обусловленной человеческим фактором. Действительно, если замкнуть оба этих контактора одновременно, даже на несколько тысячных долей секунды, двигатель может мгновенно сгореть: напоминаем, что при нормальной температуре скорость электронов равна примерно 250000 км/с, то есть более чем 6 раз в секунду позволяет обернуться вокруг Земли!
Существует и другая опасность: представим себе, что двигатель вращается со скоростью 960 об/мин (МС) и в этот момент размыкается контактор МС и замыкается контактор БС, чтобы обеспечить вращение со скоростью 1450 об/мин, но в другом направлении! Момент сопротивления на валу двигателя в этом случае оказался бы невероятно большим, двигатель подвергся бы очень высоким механическим и электрическим нагрузкам и, в лучшем случае, сработало бы реле тепловой защиты. В худшем случае двигатель просто бы сгорел.
Поэтому абсолютно необходимо, чтобы при переключении с режима МС на режим БС двигатель продолжал вращаться в том же направлении. То есть порядок подключения фаз должен соблюдаться одинаковым. Иначе говоря, если фаза L1, например, подключена к клемме Ш для режима МС, то эта же фаза L1 должна быть подведена и к клемме 2U для режима БС

А кстати, прежде чем читать дальше, вы нарисовали схему управляющей цепи?

Принципиальная схема цепи управления представлена на рис. 65.5.
Если приборы контроля, управления и безопасности разрешают запуск двигателя, напряжение подается на контакт 2. Если реле тепловой защиты (контакты 2-3) и плавкий предохранитель (контакты 3-4 и 4-5) замкнуты, напряжение подается на контакт 5 регулятора температуры воды на выходе из градирни, который является общим для двух ступеней регулирования температуры.
Допустим, что температура воды низкая. Тогда оба контакта 5 разомкнуты и обмотки МС, БС и R не за-питаны. Когда температура воды начнет расти, контакты 5-6 замыкаются и через нормально замкнутые контакты 6-7 реле R подается питание на реле МС, обеспечивающее работу двигателя на режиме МС.
При этом размыкаются нормально замкнутые контакты 8-9 реле МС. Когда расход теплой воды в градирню увеличится и температура воды поднимется еще больше, регулятор температуры замкнет контакты 5-8. В результате будет подано напряжение на реле R, вследствие чего разомкнутся контакты 6-7, обесточится реле МС и замкнутся контакты 8-9 реле МС. Напряжение поступит на реле БС и двигатель перейдет на режим БС (заметим, что в этом случае момент сопротивления на валу двигателя будет очень небольшим, поскольку двигатель уже работал на режиме МС).
Далее, если температура воды упадет, реле-регулятор температуры разомкнет контакты 5-8 второй ступени. Вследствие этого будет снято напряжение с реле БС и реле R. Контакты 6-7 реле R замкнутся, будет подано напряжение на реле МС, после чего разомкнутся контакты 8-9 и двигатель вновь перейдет на режим МС.
В нашем примере двигатель на режиме БС вращался со скоростью 1450 об/мин и, как только разомкнутся контакты 8-9, он тут же переходит на режим МС, когда вращение осуществляется со скоростью 960 об/мин. Иначе говоря, происходит мгновенное замедление скорости вращения от значения 1450 об/мин до значения 960 об/мин. Усилие, необходимое при этом для того, чтобы затормозить двигатель, является причиной возникновения значительных механических нагрузок и, как следствие, заметного пика по току в цепи питания обмотки МС.
Этот недостаток можно устранить (см. рис. 65.6), установив вместо реле мгновенного срабатывания реле R с временной задержкой (такое реле часто называют реле замедленного действия).

В тот момент, когда по команде регулятора температуры размыкаются контакты 5-8 второй ступени, реле БС обесточивается, также как и обмотка реле R замедленного действия (рис. 65.6). Однако контакты 6-7 реле R остаются разомкнутыми в течение заданного времени задержки (в данном случае 3 секунды) после снятия с него напряжения. В течение этого времени у нас не подается напряжение ни на обмотку БС, ни на обмотку МС. Вращение двигателя замедляется, причем тем быстрее, чем больше момент сопротивления на вентиляторе.

Спустя 3 секунды контакты 6-7 реле R замыкаются.
К этому моменту вращение двигателя замедляется до скорости, близкой к 960 об/мин. На обмотку МС подается напряжение и двигатель продолжает вращаться со скоростью 960 об/мин не испытывая ни механических пиковых нагрузок, ни забросов по току.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector